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Abstract

Many of the problems of large software systems have
been attributed to the design phase of software development,
problems such as high maintenance costs, the predominance
of software error types traceable to design (rather than to
coding), and the high cost of diagnosing and correcting
design er;ors.'ythe most p;oq{s?gg approach to thesu“
problemsfisd‘geff;rmgi\sp;;;fi;ation of module interfaces,
during the design phase, based on the information-hiding
principle.

The advantages of formal specifications are as follows:
(1) Their precision, lack of ambiguity, and attention to
detail should cut down on design errors. (2) They
provide informal verification of a hierarchically desigqu
system while it is being designed. (3) Special design
validation teams could rigorously verify a design before
it is implemented, perhaps with the aid of automated tools
for some of the verification. (4) Formal specification
enables rigorous specification of the requirements that an
embedded computer system must conform to. (5) They
combine with the information-hiding principle to enable
design of systems that are much easier to modify and
maintain.

Yet, the formal specification of modules itself has a

serious drawback: the upfront effort in creating them is

considerable. COnsequently;Q;his research has investigated

T T prens




the feasibility of a library of formal specifications so

that designers could build on the work of others and thereby

significantly cut the upfront effort involved.}in have

identified five issues as paramount to the feasibility of
such a library, and have concentrated on adapting

methodological techniques already familiar in software

engineering.
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1. Conclusions and Recommendations

This final report 1is organized as follows: this
section briefly summarizes the conclusions and recommen-
dations of the research after a very short exposition of
the purpose of the project. Section 2 introduces the
research by explaining its motivation and purpose. Sec-
tion 3 introduces the major issues that we considered.
In sectlon 4, we itemize exactly what we did and the
analysis techniques used. Detailed results are justi-
fied in section 5. The relation of this work to that of
others appears in section 6. Several appendices are
included. One describes the specification language used
in the examples; the remaining four are a small sampling
of module specifications written during the course of

the project. ° 3
1.1 Brief introduction

Large software systems can be defined as systems
requiring at least 25 programmers to develop and requir-
ing at least 30,000 lines of source code. Case studies
(Boehm, et.al. (1975) and Hamilton and Zeldin (1975)) of
such systems have shown that software errors traceable
to the design phase of system development can account
for as much as two-thirds to three-quarters of all error
types, even on generally good software systems, compared
with as little as one~quarter to one-third of all error
types traceable to the programming or coding effort.

The types of errors traceable to the design phase are
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predominantly errors in the interface of subsystems or
modules.

Design errors and design validation are particular-
ly crucial in embedded computer systems. An embedded
computer system is _a system developed specifically to
function as a component of a larger system.

A design technique to address these problems was
developed by Parnas (1972). It concentrates on defining
the interface of a module in enough detail that all oth-
er systems may use it, but completely independent of the
way the module may be implemented. Since programming
languages focus attention on how to implement a module,
several new lanquages for formally specifying the inter-
face of modules have been developed in the 1last few

years. |

The technique of formal module specifications s;ems
to offer muqh toward solving many problems iricluding:
the high cost of software maintenance, the predominance
of design errors, the difficulty and cost of diagnosing
and correcting design errors, and the special design and
maintenance problems of embedded computer systems. Yet,
the creating of formal specifications is very difficult,
requiring much upfront effort, and therefore the solu-
tion itself is rather costly.

The natural solution 1{is to develop a library of
formal specifications of modules. By reusing module
specifications, rather than recreating them, the cost of

the upfront effort would be dramatically cut and the

e v ————
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problems 1listed in the preceding paragraph would be
solved.

That is the motivation of this research in

examining the feasibility of such a 1library. Several

issues are 1involved 1in such a library being feasible.
To answer each question about the feasibility of a 1li-

brary of formal module specifications, we have given

special attention to techniques that are already

available in software practice and could be adapted to

these particular questions regarding the feasibility of

a library, (rather than spending effort on developing
yet another language or another methodology). Since

formal specifications are so hard to create and demand a

—— ——— e—— —

jndividuals, our focusing on familiar software

techniques that could be adapted to the problems of suchk

2 library has the additional benefit of making the

library far more practical and usable.

1.2. Summary of conclusions

Three techniques have proven very useful for
detecting flaws, omissions, and errors in the formal
specifications of module interfaces. One is an automat-
ic tool (Roubine and Robinson, 1976) which checks for
syntactic correctness and some simple semantic problenms,
such as referenced but undefined functions or variables.
A second is a walkthrough to check the correctness and

completeness of the interface and to criticize the
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readability of the specification. (For a 1library of

e

such specifications, the guidelines we have suggested

for documentation would enable each user of the library,

in essence, to perform a walkthrough of the

specification, informally checking its correctness.

Thus, with each use of a module from the library, our

confidence in the correctness of the specification can

justifiably increase.) The third technique is to write a

very rapid implementation ol the specified module in a
very high-level lanquage. Each technique uncovers flaws
or omissions in the specification.

Rigorous design validation before coding even be-
gins would be possible using formal specifications,
since an independent verification and validation team
could be called in to verify the design. For instance,
the designs of two operating systems, (Neumann, et.gl.,
1977 and Ford Aerospace, 1978) have been proven to main-
tain certain security properties before implementation
began.

Automatic retrieval of module specifications from a
library is analogous to the bibliographic retrieval
problem. Since that is such a difficult problem involv-
ing so many research projects, we concluded not to ad-
dress that aspect further, but merely suggest the use of
techniques such as keyword analysis.

For a given application, it is crucial that only a
few prototypes in the library cover the vast majoricy of

variations. For if more than a few prototypes must be
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considered, too much of the designers' time will be tak-
en studying the many alternatives. Since the formal
specifications are difficult to understand, it is un-
realistic to expect that a designer can carefully study
more than a handful.

In the examples we have written during the
research, we have found that two to four prototypes seem
to cover most needs for a particular type of data struc-
ture and three prototype text editors seem to cover most
varieties of text editors. This was accomplished by
following three principles for writing and selecting

prototypes for the library.

1) Details that are somewhat arbi-
trary and which the designer may
wish to modify should be 1localized -
into subdefinitions so that the
modifier need modify the specifica-
tion in only one place for each

detail.

2) Aspects of the module that are
not fundamental need not be speci-
fied in the library. A whole host
of valid command 1languages may be
added on to the logical abilities of
any given text editor; therefore,
our prototype specifications did not

include a command language.

‘ R | i
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3) The prototype should include as
many logically different operations
as possible, since the designer can
easily delete ones unneeded 1in a

particular environment.

Although the results using the three principles are
very promising, we simply have insufficient evidence to
judge whether application areas 6ther than data struc-
tures and text editors will also be covered by only a
handful of prototypes. Further research and experience
is definitely needed to answer this question.

A third issue is what to store in the 1library.
Clearly, the specifications of the module interfaces
must be stored, for this is prerequisite to the modern
design methodology proposed by Parnas and many others to
solve the problems of large software systems and embed:
ded computer systems. For any specification, many
hierarchical program designs and many programs imple-

menting it are possible. Each will have differing space

and time requirements, and therefore are necessary al- .

ternatives for differing environments. This could in-
volve several programs for each prototype module inter-
face. Furthermore, the need of a designer to tailor the
interface of the module slightly for his/her particular
needs, as one would expect to happen normally, requires
modifying any selected program implementing the module.
Consequently, we have no definite answer as to whether

storing the alternative implementations as well |is




feasible.

We have identified six items that must be stored
with the module specification as documentation. These
are short descriptive items designed to enable a
| designer to quickly identify a handful of interface
specifications that a;e closest to his/her needs.

Since formal module specifications are so hard to
understand, a fourth issue is how to make them more
understandable. We have identified three reasons for

the difficulty in understanding formal specifications.

Programming languages focus on implementation de-
tail; the module interfaces must be specified indepen-
dent of implementation detail. Consequently, the seman-
tics of these languages is fundamentally different than
the languages we are familiar with for programming.
Therefore, rather than trying to devise a new lanqu;ger
we have shown how to adapt many of the principles of
writing well-structured, easily understandable programs
to the task of writing understandable module specifica-
tions.

The last 1issue is how to define the interfaces to

be stored in the library so that they may be easily

modified for or tailored to the demands of a specific

environment. Two principles were discovered for this.
One is to localize any detail that is somewhat arbitrary

in a definition; then, to modify the detail, only one

change need be made. Second, the author of the specifi-

cation should make a list of the details that he/she
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suspects might need modification, so that the author's
anticipation of possible changes saves the designer's

effort.
1.3 Recommendations

For each module specification written, we quickly
implemented a corresponding program in a very high level
language as a means of testing the completeness of the
interface specified. The rapidity with which we could
create this quick-and-dirty implementation suggests that
very high level languages might be the means of creating
software breadboards. Though the breadboard would be
wasteful of memory and time, it could be created quickly
to demonstrate the functional characteristics of the
system., If a scale factor for the speedup and the econ-
omy {in memory usage can be estimated for going from.the
breadboard to a production system, the breadboard would
also provide ballpark estimates for the performance of
the module.

In this way, the breadboard would provide end users
with actual use of the system under desiqn as a means of
design validation. Furthermore, we found that a siqni-
ficant portion of the specification language features
had a standard translation into the very high level
language. Consequently, a software tool could be
designed to perform much of the translation fr m specif-

ication lanquage to very high level language automati-

cally.




Therefore, we recommend empirical research in the
use of an existing high 1level 1lanquage, such as
INTERLISP (Teitelman, 1975), for the purpose of rapidly
building breadboard systems corresponding to a design.
Research in building and experimental use of a semi-
automatic tool to traéslate a significant portion of the
specifications into a very high 1level language also
seems to be a high-payoff area for investigation. (The
software tool could not be fully automatic since the
specification language specifically leaves out implemen-
tation detail. So, some coding by a human {s always
necessary.)

Another area for further work is to specify many
more modules from a diverse class of applications. Our
results were promising, since a handful of prototypes
could cover most needs in the areas of data structdres
and text editors. However, our experience is simply too
limited to project whether this key ingredient to the
success of such a library will carry over to other ap-
plications.

In the same way, we did not have time to experiment
with storing several alternate implementations for each
module specification. For this to be feasible, the
number of alternate implementations per module sbould be
small. Also any requirements to modify or tailor a pro-
totype module interface to a particular environment must
be easily implementable changes in the alternative pro-

grams stored with an interface specification. This is
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certainly worthy of further research.

Our final recommendation is that a library such as

we have proposed should not be bequn for actual use

until specification lanquages leave the experimental

stage. These languages, being very young, will continue

to be enhanced, particularly in the area of specifying

the semantics of parallel computing. Liskov (1977) pro-

vides a survey of the state of the art in specification

languages.

i M e i i i
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2. Motivation of the Research

The attractiveness of having a library of the pro-
ducts of previous software development is the benefit of
building on the work of others. There are several rea-
sons in particular 'for wanting a 1library of formal
specifications of modules, the key product of the design

; phase of the software development process. We present

these reasons in the following subsections.

2.1 The cost of software and its maintenance

The high cost of software is well-known and need
not be belabored; however, the immensity of the problem
can be quickly indicated by such facts as the following.
It 1is estimated in Boehm (1977) that the annual cost of
software in the United States is $20 billion dollars, or
almost 2% of the entire gross national product. 1In :
study for the Air Force, Boehm (1973) reported that the
estimated software expenditures of the Air Force for
1972 were three times the hardware expenditures. Even

more startling is the projection from the same study

that by 1985 the annual software expenditures of the Air

Force would be nine times the hardware expenditures.

At the same time, the maintenance costs of software
are of deep concern. Large software systems are notori-
ously difficult to modify in response to changing needs
or the discovery of bugs not found until delivery of the
product. For instance, 0S/360, a major operating system

for the IBM 360 series of machines, {s one of the
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largest software systems ever developed. It is estimat-
ed, (Boehm, 1973), that with each new release of the
system, 1000 new software errors were introduced.
Insight into the causes of such massive software
modification prohlems\is given in the case studies cited

in the next section.

2.2 Design errors and the importance of design valida-

tion

A major cause of the maintenance problems of
software 1is the design of large software systems, as
evidenced in the following case study by TRW. Boehm
(1975) reports that the software studied is an example
of a generally good system, delivered on time and within
budget by TBW. The system consisted of 100,000 source
code statements and underwent five modifications du;lnq
its 1life cycle, ranging in size from just under 1000 up
to 10,000 source code statements changed.

The errors found in making the five modifications
were cateqorized into 224 types. In a summary analysis,
the error types were classified as to their origin,
either traceable to the design bhase (requiring a modif-~
fcation of the detailed desiqn‘description) or attribut-
able to the coding phase of software development. Error
types traceable to the design bhase tended to involve
interface problems between the modules of the system.
"Not only did the number of types of design errors

outweigh the coding error types, 64 percent to 36
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percent, but also the design errors took the longest by

far to detect,"” (Boehm, et.2l., 1975, pp. 125-126). In

fact, 54 percent of the error types were not found till

integration test or later; of these, 5 out of 6 were

design errors. Thus, the overwhelming majority (75%) of

the coding error types were found before integration

test, but the overwhelming majority (70%) of design

i error types were undetected until integqration test or

later. In a related study, it was found that the aver-

age time to diagnose and correct design-type errors was
about twice that of coding errors.

Similar results have been reported by Hamilton and

Zeldin (1976); 73 percent of all errors found during

integration tests of the APOLLO project were interface

problems.

Clearly then, the design phase of software

development is most critical in building large software

systems that are both maintainable and reliable. Design

validation is therefore crucial before coding begins.

For a number of reasons given in the next section,
the formal specification of modules has been sugqgested
by many computer scientists as the solution to these

problems.

e e

2.3 The attractiveness of formal module specifications

By a "module," we mean a tightly related group of
algorithms and data that provide some computational

facility. Because of the aforementioned problems of
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maintaining software, the information-hiding principle

{
|
|
|

was suggested by Parnas (1972) and has been widely ac- ﬂ
cepted since then. According to this principle, one |
should modularize a system by identifying those design |
ﬁ decisions which might be reversed due to changing condi-

tions during the 1life-cycle of the system. For each

| such design decision, a module is defined such that the

result of deciding that design issue is hidden in the

module and invisible to processes or people using the

module. The information-hiding principle requires that
there is a technique for precisely specifying the inter-
face of a module and the visible behavior of the module
in all circumstances.

In this way, designers can completely specify the
modules of a system such that a programmer team can be
assigned to each module and such that each team can Qork
independently without knowing any more about the other
modules than the specifications of the interfaces.
Since each module depends on only the interfaces of the
other modules, any of the design decisions hidden by the

modularization based on the information-hiding principle

can be reversed easily, for only one module must be

T

modified. Parnas (1976) demonstrates how this technique
enables the specification of a family of closely related
software systems such that moving to another family of
the system is much simpler than would be otherwise pos-
sible. Modifications of a system due to changing needs

and environment during the software's life cycle is like
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moving from one member of the family of systems to

another.

Given this, there are several reasons why

formal

module specifications appear so promising for software

problems.

1) Several formal 1languages have
been developed for specifying the
interface of a module according to
the lnformation*hidinq principle.
They define as much as is needed to
know exactly how toause the module
wi thout committi;q the module to any

particular ;1qorithms or data struc-

tures for implementing it.

-

2) Formal specifications state the
inferface of a module precisely,
unambiguously, and completely.
Design errors resulting from incom-
plete, vague, or ambiguous module
descriptions should be vastly cut

down. The case study data cited in

2.2 testifies to how large a percen-
tage of errors are related to inter-
face definition and how difficult
and expensive it is to correct such

errors compared to coding errors.

s 3) As Parnas (1977a) points out,
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formal specification of modules
seems to be a necessary part of a
topdown development or stepwise
refinement to define the design of a
large softw§re system. For one must
specify each assumption of the next
lower 1level before proceeding to

that level.

4) By using a formal specification,
one can prove properties of the sys-
tem specified. For instance, Neu-
mann, et.al. (1977) presents proofs
that their formally specified design
of an operating system quarantees
certain security properties of the
system. Fur thermore, informal
proofs of the correctness of the
design can proceed at each step of a

stepwise refinement as the design

process i_ 1_ progress.

5) With a formal specification, a

technical team using machine aids

could rigorously validate the design

before coding begins.

6) It has been shown (Parnas,

1977b) that using the information-

hiding principle to define modules
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by formal specifications signifi-
cantly simplifies the problems of
developing and maintaining embedded
computer systems. An "embedded com-
puter system" is a system developed
specificall§ to bhe a component of
another system. Such systems arise

in Defense Department needs.

2.4 Problems with formal specifications of modules

Though the formal specification of modules seems to
offer so much in solving the problems of large software
systems, there are problems with using formal specifica-
tions. They are very hard to «create, and therefore
require considerable upfront investment of effort in the

-

software development process. In speaking of this up-

front effort, Parnas (1976, p. 7) comments, "The method
permits the production of a broader family and the com-
pletion of various parts of the system independently,

but at a significant cost. It usually pays to apply the

method only when one expects the eventual implementation
of a wide selection of possible family members."

Each significant modification of a software system
during its life cycle corresponds to moving from one
member of the family of software systems to another.
Consequently, whenever it is 1likely that significant
modifications will become necessary during the software

life cycle, a broad family of software systems must be

e o s A s
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possible from the design. For embedded computer sys-
tems, the likelihood of change throughout the life cycle

of the system is particularly acute.
2.5 The need for a library

Thus, the technique of formal module specifications
seems to offer much toward solving ...y problems includ-
ing: the high cost of software maintenance, the predomi-
nance of design errors, the difficulty and cost of diag-
nosing and correcting design errors, and the special
design and maintenance problems of embedded computer
systems. Yet, the creating of formal specifications is
very difficult, requiring much upfront effort, and
therefore the solution itself is rather costly.

The natuyal solution is to develop a 1library of
formal specifications of modules. By reusing moéule
specifications, rather than recreating them, the cost of
the upfront effort would be dramatically cut and the
problems listed in the preceding paragraph would be
solved.

That is the motivation of this research in

examining the feasibility of such a library. The issues

involved in such a library being feasible are described
in the next section.

A library of formal specifications of modules has
an additional Dbenefit for design validation. If the
author of a formal specification follows the quidelines

for documentation that we have developed during this
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research, each reader of a formal specification would be
able to informally verify that its specification satis-
fies the properties the author claims for it. There-
fore, with each use of a specification of the library,
our confidence in the correctne . of the specification
will justifiably incr;aso.

To answer each question about the feasibility of a
library of formal module specifications, we have given

special attention to techniques that are already

available in software practice and could be adapted

1% 13

these particular questions regarding the feasibility

a library, (rather than spending effort on developing
yet another language or another methodology). Since

formal specifications are so hard to create and demand a

way of thinking about design which is rather new to most

individuals, our focusing on familiar software

techniques that could be adapted to the problems of such

a library has the additional benefit of making the

library far more practical and usable.




3. Issues

There are five issues that must be resolved to
determine the feasibility of a library of formal designs
of software modules: how to retrieve items from the
library, whether a few prototypes for a given applica-
tion will cover the vast majority of possibilities for
that application, what a library item should consist of,
whether the formal specifications will be understand-
able, and whether they can be written in a way as to be
easily modified.

For each of these issues, we describe their signi-
ficance in this section. Details of the methqu used in
answering these questions are given in section 4; except
for the question of retrieval which is answered in 3.1,

all other questions are answered in section 5. =

3.1 Retrieval

Clearly, retrieval from the library is a crucial

question; yet it is a most difficult one. One class of

data base techniques is oriented to storage and re-

trieval of individual fields from records satisfying
particular properties. For instance, a company might
have a file of employee records with one record per
employee, each record consisting of fields such as name,
social security number, address, birthdate, department,
starting date with the company, present salary, etc.
Each fi2ld represents factual information about the per-

son or entity represented by a record. Typical

L e e
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retrieval for such a data base might include a command
such as "List all employees in our marketing department
who earn more than $25,000." There are well defined and
researched technologies for such data bases, including
relational data bases, hierarchical ones, and CODASYL
data bases. :

The entity in question for our library or data base
is a module specification. Unfortunately, what a user
of the library would like to know about one is not
characterizable by a set of facts, as in the example
mentioned above. Rather, a designer wants to know the
function, purpose, or mission of a given module and see
what the closest match to his/her need is.

This 1is analogous to the user of a library wanting
all books or journal articles related to a specific need
or topic. Jgst as in the case of bibliographic matecin
al, there is one dominant question: "Find all module
specifications (or books in the bibliographic case) that
address the following need (or topic in the case of
bibliographic retrieval)."

Consequently, the relevant data base techniques are
those for bibliographic retrieval. Given this analysis,
we decided rather early in the grant period not to in-
vestigate this question further for the simple reason
that so many people are studying the problem of biblio-
graphic retrieval that this effort would better be spent

on issues solely related to module specification.

For retrieval purposes, we therefore recommend
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using keywords to describe the purpose of the module.

3.2 Prototypes

Closely related to the problem of retrieval is the
following crucial que§tion: for any particular applica-
tion need, will there be a small number of prototypes
which cover most of the variations possible? The ideal
would be that a handful of prototypes for a given need
would cover the major possibilities, so that the
designer can quickly ascertain which, if any, fits best.
If there are many prototypes necessary for each applica-
tion, then the time spent analyzing each one will make

using the library prohibitive.
3.3 What to store

The term "design" covers many aspects of soft&are
development, ranging from (a) partitioning a system into
modules and precisely defining the interface of each
module, to (b) defining the detailed control structures
of & procedure or algorithm using a program design
language. Of the products which result from the various
design activities, which should be stored? Could all be
meaningfully stored? Could programs implementing a par-
ticular design be stored as well?

Furthermore, what kinds of documentation can be
provided with each of the prototype module designs so
that a user of the library can quickly discard ones that

do not fit his/her needs and concentrate on only a few

" i ————— i Al s




for in-depth study?
3.4 Understandability

The formal designs stored must be understandable.
Even if the previous three issues are satisfactorily
solved, a library of éormal designs of modules will be
useless unless the formal specifications are understand-
able. The user of the library must be able to under-
stand the specifications in order to decide whether the
design meets his/her needs and to successfully integrate
it into the rest of the system of which the selected
module is a part. The module must be integrated into
the system both at the design level and at the implemen-
tation level.

Unfortunately, understandability of formal design
specifications is the overwhelming problem with -tho
specification 1lanquages available. Consequently, we

have concentrated most on this one issue.
3.5 Modifiability

Given that the most appropriate specification |is
found, it may not be a perfect match to the designer's
needs. In that case, the more easily the specification
can be modified to suit those needs exactly, the better.
What techniques are there to write specifications which

are easily tailored to meet a slightly different need?
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4. Method used in studying the five gquestions

Our method has been to specify as many modules as
possible to build up experience upon which to suggest
answers to the five questions. Study of these examples
provides the basis of: our conclusions. The examples
fell into two general classes: data structures and text
editors.

Commonly wused data structures were chosen for
several reasons. First, they are crucial in wvirtually
all programming applications; hence, they would have to
be a part of the proposed 1library. Second, the
overwhelming majority of module specifications appearing
in the 1literature are just those data structures.
Third, they are simple enough that we could specify
several during the grant period; because of their sim-
plicity they would be easily understood by anyone unfam:
iliar with the formal 1language SPECIAL, (Roubine and
Robinson, 1976), which we used for our specifications.

Text editors were chosen because they represent a
realistically complex application without being intract-
able in the time available.

For each application considered, we tried to con-
ceive of all meaningful variations that would arise
within that application. Any significant difference in
the functional capabilities of the module was considered
a meaningful variation.

For a last-in-first-out storage structure, we

specified two modules: a stack from which one could
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read values from only the last item stored, and a stack
which additionally had a movable pointer into the stack.
Any value designated by the pointer could be read, but
not modified. (This variation is useful in interactive
debugging aids to recursive programming languages such
as Algol, Pascal, APL, and Lisp, for the programmer can
then examine the sequence of procedure calls when an
error occurs.)

For a first-in-first-out storage structure, we
specified four variations: a normal queue where reading
occurs at only the front position of the sequence, a
priority queue, and two character streams. 1In a priori-
ty queue, the first entered of the largest values
(highest priority) is read or removed from the sequence
before any others; no other values can be read. Charac-
ter streams are very useful abstractions of input.ané
output; for they enable the details of synchronizing
input/output operations to be hidden in the module rath-
er than forcing all programs to be aware of the means of
synchronization. The basic operation of one of the
character streams is character oriented; for the other
version, the basic operation was oriented to blocks of
characters or lines.

The wubiquitous tree was another application which
we specified. Two variations, the binary tree and gen-
eral tree, seem to cover all logical variations. Though
we specified a binary tree, we did not get to the gen-

eral tree. One might wonder why a threaded tree is not
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a third logical variation. The reason 1is simple: a
threaded tree 1is an implementation of a fast means of
performing tree traversal, an operation on trees. Con-
sequently, the specification of binary trees includes
three operations for inorder, postorder, and preorder
traversal; the detailé of how the traversal is performed
(perhaps via thread links) is not properly part of the
specification, for it would violate the information-
hiding principle.

For text editors, we found thrze logical alterna-
tives. One has operations oriented to adding, deleting,
or moving characters; a small, basic subset of the
operations of TECO, a popular editor on the DEC series
of machines, was specified. Another module specified
has operations oriented to 1lines and 1line numbers; a
basic subset~ of the commands of SOS, another popdla;
editor on DEC machines, was specified. The third exam-
Ple is an editor whose operations are oriented to moving
a cursor on a CRT screen and editing on the screen; NED
(Bilofsky, 1977), an editor running under the UNIX
operating system, was used as a pattern of the function-
al capabilities of such systems.

For each of the modules specified, several tech-
niques were used to check the correctness of the specif-
ications. (By "correctness"™ of a specification, we mean
that it specifies exactly the properties desired.) One
was to use an automatic tool, the specification handler

for SPECIAL (Roubine and Robinson, 1976). This checks
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for syntactic correctness of a specification. Since
SPECIAL 1is a strongly typed language (every expression
has a type such as INTEGER, BOOLEAN, etc.), the system
can check that the types of each expression always agree
with what they should be. (Due to an oversight, the
priority queue was never run through the specification
handler.)

A second check was for someone other than the au-
thor to scrutinize the specification for anything that
seemed to disagree with the author's claims; this is
like a walkthrough.

Third, a quick implementation corresponding to the
prototype was made in a very high level language (LISP).
(An  implementation of the third text editor was not
started due to the termination date of the grant; all
other modules were implemented.) This provided a éon*
crete system for testing the functional capabilities of
the module; it often uncovered specification errors not

found by the previous two methods. The implementations

took remarkably little time; by using a very high level

language one could trade the performance characteristics

of the implementation for wvastly reduced programmer
time. Consequently, the final module we checked in this
way took only two to three days for one programmer to
implement, even though it 'was the character-oriented
text editor, a significant, realistically compl ex
module. Furthermore, we found significant regularity in

the implementation of most types of expressions

g 7
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specified in SPECIAL. This suggests that a significant

Proportion of each implementation could be done automat-

ically by a software tool.




S. Detailed results

In section 3, we isolated five questions about the
feasibility of a library of formal designs of software
modules. Section 4 presented the empirical study per-
formed to answer the questions. One question, how to
retrieve items from such a library, was answered in sec-
tion 3. Our results on the remaining questions are

detailed here.
5.1 Prototypes

For any particular application, will a handful of
prototypes cover most of the possible modules to meet
that need? 1If more than a handful are needed for any
particular need, the designer will have to spend too
much time analyzing each one to find the best _for
his/her needs. 3

Our experience in writing many specifications is
very encouraging; however, it is simply insufficient to
answer the question conclusively.

In the area of data structures, two to four proto-
types seem sufficient to cover the various significant
alternatives. For instance, for a stack, or last-in-
first-out storage structure, the two alternatives were a
stack allowing retrieval of values only at one place
(the "top") and a stack allowing retrieval of values
from any position designated by a movable pointer.

Although certain details of each specification

might be changed by the designer, details such as
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whether trying to read from an empty stack causes an
error or not, are not significant enough to warrant
storing additional prototypes. Rather, the author of
the specification in the 1library can include in the
documentation notes to the readers (designers) about
details that might be.modified. In fact, our documenta-
tion for each example includes that.

In addition to the area of data structures, our
examples dealt with medium-sized software tools, such as
text editors. (By software tools, we mean software that
serves as an aid in writing other software.) Though
there was only enough time to study the one application
area of text editors, our experience was very encourag-
ing. Thus, we cannot state conclusively that for all
classes of software tools, a handful of prototypes will
largely cover all variations, but we suspect that £his
will hold true.

For instance, there are a vast variety of text edi-
tors available. However, they seem to be classifiable
into three categories. The first category is text edi-
tors whose operations are oriented to insertion and
deletion of characters relative to a current position.
Line numbers may not be used at all; rather, one moves
the pointer defining the current position to indicate
where editing is to occur. TECO (Digital Equipment Cor-
poration, 1972), a DEC product, is an example of this

class. The second category is text editors whose opera-

tions have a sequence of line numbers as an argument and




LR S

B

which are therefore oriented to operations on lines.
S0S (National Institute of Health, 1977), another DEC
product, is a particularly rich example of this class in
that the user may leave the line-oriented mode and move
to a character-oriented mode on a range of 1lines. The
third. category |is éext editors whose operations are
based on viewing a CRT screen as a window into the file,
where editing can take place. Editing occurs within the
window relative to the position of a cursor. NED (Bi-
lofsky, 1976), is an example.

Almost all general-purpose text editors can be
classified into one of the three categories. (One ex-
ception is the special-purpose editors created for edit-
ing LISP programs (Sandewall, 1978).) However, that
does not prove that three prototypes will cover most
] applications, unless one follows these princip1e§ in

creating the specifications for the library.

1) Certain details of a specification
will vary given the environment in which
the module is to be used. Select a con-
sistent set of decisions for the specifi-
cation in the library. As much as is pos-
sible, localize each such detailed deci-
sion 1in a subdefinition of the specifica-
tion; in this way, a user of the 1library
can modify the arbitrarily chosen detail

just by changing the subdefinition. (One

of the extremely useful features of
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SPECIAL is that the language provides many
mechanisms for making such subdefini-
; tions.) In the documentation, all details
which are arguable must be clearly indi-

cated.

2) In specifying a new entry for the

library, avoid differences that are not
fundamental to the 1logical, functional
capabilities of the module. Those differ-
ences would multiply the number of entries
for a given application in the 1library
without adding any new abilities. For
instance, in specifying text editors, we
did not define a user command language,
for there are many 1legitimate syntactic .
variations, each of which will be of vary-

ing value to different user communities.

3) The author of a new entry for the
library should specify as many logically

different, primitive operations as can be

T R

imagined. A designer, after selecting a

specification from the library, can delete

operations from the interface not needed

in his/her environment. This, of course,
assumes that each operation at the inter-
face was defined using information-hiding

as stated in principle (1). For instance, c
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our specification of a line-oriented edi- ‘
tor was patterned after the functional
capabilities of SOS. The operations
corresponding to the alter mode, where the
‘ user can modify a range of lines using

character-oriented operations relative to

a pointer, can easily be removed.

In conclusion, our experience 1is too 1limited to
determine whether for all applications, only a handful
of prototype specifications will cover almost all varia-
tions in modules for the particular application. Howev-
er, the three principles above did enable us to specify
a handful of prototypes successfully covering most anti-
cipated needs in the applic%tion area of text editors

and in the class of applications of data structures.

That fact is quite encouraging.

5.2 What to store

' For any given module specification to be added to
the 1library, what should be stored? The functional
specification? A hierarchical design for implementing
the module? A comp}ete program? Furthermore, what
kinds of documentation are necessary?

Clearly, the abstract, formal specification of the
interface of the module must be stored, for this is cen-
tral to hierarchical design of a large software system.
The specification of the module's interface defines each

functional capability of the module, specifying the
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arguments of each function call, and the effect of any
operation or function at the interface of the module.
Of course, this information is exactly what is necessary
for the independent implementation and use of modules
according to the inEOfmation-hiding principle (Parnas,
1972). Fur thermore, the specification of the module
interfaces is necessary for embedded computer systems.

Thus, the formal specification of the module's
interface must be included, and we have therefore con-
centrated our research on this. Yet, could one store an
implementation as well? 1In general, any module of sig-
nificant size, when implemented would itself be
hierarchically broken down into modules that together
implement it. Furthermore, there would normally be
several alternate ways of hierarchically . defining
modules to implement the one of interest. Thus, ;nce
the designer has selected a module specification meeting
his/her needs, a second selection must be made from
several alternate hierarchical designs implementing the
module, There is no technical problem to being able to
specify the hierarchy, €for SPECIAL, as with other
specification 1languages, permits the formal definition
of a hierarchy implementing the functional capabilities
of a module as well as the formal definition of those
functional capabilities.

The diagram below summarizes this. Associated with
each module specification M, there would be a few

hierarchical designs HD for implementing it.
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It is possible technically; however, the designer
must consider each alternative design after selecting a
given module. The true payoff would come if not only
the hierarchical design could be stored but also pro-
grams corresponding to it.

Again, even for a single hierarchical design, there
will in general be several significant, alternate pro-
grams implementing it. Given a module's specification,
the differing hierarchical designs for it and the vari-
ous programs implementing each desiqgn will offer various
tradeoffs in computing time required, memory used, and
other computer resources required. In other words, thé
performance and computational needs of the various pro-
grams make the alternatives meaningfully different. As
an example of this, even for a task as simple as sorting
a sequence of items, there are several competing algo-
rithms, such as quicksort, heapsort, mergesort, bub-
blesort, and insertion sort. Each has advantages and
disadvantages due to differing performance and memory
requirements. Given the environment, the tradeoffs
among the algorithms can be resolved to select a partic-
ular program. Thus, we have the situation described in
the figure below. For each module M, there will be a

few associated hierarchical designs HD. For each

-
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hierarchical design, there will be a few programs P

associated implementing module M.

It 1is technically feasible to include with the
functional speciﬁ}cation of the module's interface vari-
ous hierarchical designs and corresponding programs
implementing the module. However, since the number of
implementations that may need to be stored for an;
module could be relatively large, developing a reason-
ably complete library including implementations as well

could take many years. However, the library would be of
/

-great value to designers just with the module interface

specifications as the alternative programs for each
module are added slowly.

Furthermore, even with a complete 1library, some
reprogramming would always be necessary. The reason is
that the module specification M itself may oftentimes
need slight modification due to varying environments in
which the module is to be used. This will require

modification of one of the library's programs
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implementing it as well. For this to be feasible, each

program stored would have to be very well structured and

S

very well documented.

To repeat, in this study we have concentrated ex-

clusively on the feasibility of building a 1library of
modul e specification; M, defining the interface of a
module.

What documentation must be stored with these module
specifications M? Detailed documentation must be stored
in the formal specification itself so that a comment is
with the expression it is describing. Our thoughts on
such commenting appear in section 5.3. Additionally, a
short high-level description is crucial to the effec-
tiveness of the library so that the designer may quickly
ascertain whether a module specification is relevant to
his/her needs. The designer must be able to quiékly
eliminate ones that are not close to the need so that
he/she can focus attention on two or three that are the
most, promising. Otherwise, the 1library would bog
desiéners down on decisions that should be made quickly.

We have found six types of information that seem
valuable for quickly deciding on the relevance of a £

module specification. One 1is a 1list of keywords

describing the purpose of a module. A second item is a
description of the purpose of the module and the kinds
of needs it fills. A third item is a summary descrip-
tion of each class of functional capabilities the system

has.
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Fourth, the kinds of decisions not made by the
module are described; these are implementation decisions
which would have to be made after selecting a module,
when the coding phase begins. These decisions, which
are left open by the specification of the module's in-
terface, are a direct‘measure of how easily the software
can be modified during its life cycle. This is because
the decision is made at implementation rather than at

‘ design, and because the result of the decision 1is iso-

lated in one module. Therefore, each decision is easily
reversed during the system's 1life cycle by modifying
only the one module (rather than having to modify many).
For instance, in specifying a text editor, we would
write 1in this section, (which we have called "Informa-
tion Hidden"), that a decision to use array storage,
linked 1lists, or other alternatives to store the file
being edited, would have to be made when programming of

this module begins.

Fifth, specific references, such as texts and jour-
nals, if available, should be given describing various
implementations, algorithms, and analyses of them for

use when programming begins. And last, the author of

the specification must 1include all ways that he/she

anticipates that the specification might require modifi-

cation to tailor it to specific needs. Of course, some
details of the specification will be rather arbitrary;
these must be pointed out so that one specification can

serve for many slight variations. 1




5.3 Understandability

The formal specification of a module M must be
understandable if it is to achieve its purpose, for it
acts as a contract between designers and programming
team, stating exactly. what the programming team's pro-
duct must do (Parnas, 1977a). If a contract cannot be
understood, it serves no purpose. However, the under-
standability of formal specifications in a library be-
comes even more crucial, for if the designer cannot
understand the alternative specifications, how can an
intelligent choice be made among the alternatives? Con-
sequently, our research has concentrated most on this
single question.

Our results are in two parts: reasons why formal
specifications have been difficult to understand .and
specific suggestions on making them understandablet
Researchers in the area of formal module specifications
and abstract data types generally agree that they are
difficult to understand, though the deqree of difficulty
is arqued.

We have found several reasons for the difficulty of
understanding formal specifications, particularly as

compared to natural language specifications.

i) Natural language specifications usually

do not contain the detail that formal

specifications do. Though this is a major

reason that natural lanquage is
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inappropriate for module specification,

the necessary, added detail in a formal

specification makes them harder to

understand. Liskov (1977) agrees, stating
on p. 13-5, "Rigorous informal specifica-
tions are prob;bly just as difficult to
construct as formal ones; informal specif-

ications appear easier to construct be-

cause they are usually incomplete."”

ii) Natural language is used by each per-

son daily; thus, a natural langquage

specification has myriads of concepts

already defined and familiar to wus to

succinctly state what a module does. For

example, the concepts of a sorted se-
quence, a pointer, and a line of text, are
all well-known and are referred to without
further explanation. (Yet, the advantage
this gives to understandability is simul-
taneously a serious drawback to natural
language specifications, since the notion
raised in each person's mind need not be

the same.) Because formal specifications

are so new, there is no corresponding body

of defined concepts which have been taught

us and which have been frequently used by

us. Therefore, concepts such as sorted

order must be defined in the

g g

T




mal

spacifications

il Y

specification, thus adding to what must be
understood in the specification. Of
course, a library of such definitions
would provide a body of past experience to
study and use just as in natural language.
The formal definitions are unambiguous and
precise; therefore the definitions do not
allow multiple, valid interpretations as

in natural language.

iii) Formal specifications of modules are
to be abstract and cover many possible
implementations. Not only does the
abstractness 1itself contribute to greater
difficulty in understandability, but the
semantics of the abstract 1languages is
necessar{ly quite different than the se-
mantics of programming 1languages, since
programming languages are designed to
define implementation detail. Thus, the
focus of attention of specification

lanquages 1is of necessity quite different

from programming languages. Therefore the

semantics of specification languages is

quite different than programmers are used

to.

The following specific suggestions for making

for-

understandable have come out of our
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research. There are two alternate approaches ane could
take to make formal specifications more understandable.
One would be to abandon the present specification
languages and try to formulate one whose semantics is
like that of standard programming languages. Yet, as
(iii) states, that would fail since specification
languages, because of their purpose, must have a seman-
tics different than programming languages. A second

approach is to adapt the techniques for organizing

clear, understandable program code to the problem of

writing understandable formal specifications; this {is

the approach we have taken.

Therefore, the suggestions are familiar in program-
ming. Our suggestions, rather than being platitudes,
such as "Use comments," are specific quidelines, such as
when to include a comment and what to write. Oniy "
summary of the guidelines are presented in this section.
Fully specified modules using these quidelines are
presented in Appendices II through V and also in
Weischedel (1979).

The test of these gquidelines is whether the module
specifications seem understandable to the reader given a
reasonable amount of study and some familiarity with the
specification language SPRCIAL. (A brief description of
the major features of SPECIAL is presented in Appendix
I). Appendix II specifies a stack; appendix III, a
queue, and appendix IV a binary tree. Appendix V is one

of the three text editors specified. The examples of a
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stack and a queue are intended to provide short, simple
cases of familiar concepts to aid becoming familiar with
SPECIAL.

Our guidelines are as follows:

1) Since the specification languages, being
abstract and nonprocedural, have a semantics very dif-
ferent from that of most programming languages, one

should choose a specification language whose semantics

draws on concepts common in programming. For instance,

one of the strong points of SPECIAL is the familiarity
of many of its primitive concepts, including functions,
arguments Sf a function, exception conditions, side
effects, declarations, records, sets, vectors, reals,

integers, and characters.

2) English documentation should be painstakingly

constructed with the following principles in mind: 5

a) A high level description of the
purpose of a module which is formally
specified and a description of each
function available at the interface of
the module provides a general notion
or conceptualization for understanding
the formal specification. Though that
description will be vague, incomplete,
and ambiguous, it conveys a toplevel
view around which the complete, unam-
biguous, precise formal description

can crystallize into understanding in
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the reader's mind. Of course, the
formal specification alone 1is the
arbiter of all questions about the
module. Such a high level description
is essential documentation for manage-

ment personnel.

b) 1In general, formal specifications
will consist of a large number of for-
mulas, some of which can be very long.
(Consider the examples in the appen-
dices and in Weischedel (1979).) Each
formula should be documented, prefer-
ably with the documentation intermixed
in the formulas, so that the purpose
and implications of each subformula
are made obvious. The reason is sim-
ple: the author of the specification
when writing down a long formula had
specific reasons for writing each sub-
formula. Those reasons or implica-
tions should be succinctly stated.

The principle for deciding whether to

include a comment for a particular

subformula is whether its purpose and

implications would be obvious to the

average reader without a comment. To

illustrate this, figure 1 is given as

a definition of a function sort which
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returns a sequence b in ascending ord-
er corresponding to the input sequence
a. Comments are preceded by a dollar
sign and are enclosed within
parentheses.~ Reserved words of
SPECIAL are typed in upper case. The
comments generated by following this
principle probably enable most readers
to understand and verify the specifi-
cation even without knowing the de-
tailed syntax or semantics of the

specification language.

c) Not only will following (a) and
(b) make formal specifications under-
standable, but also following them
gives each reader of the specification
the ability to verify that every as-
pect and subformula of it corresponds
to the author's intent. This is an
informal means of design validation;
for a library of such specifications,
the means is very powerful since more
and more designers will be reading and
verifying a specification as time goes

by.




VFUN sort (VECTOR _OF REAL a) -> VECTOR_OF REAL b;

$(Given a sequence of real numbers a, a sorted

sequence of the same numbers is returned as b in

ascending order.)

DERIVATION
SOME VECTOR_OF REAL bl
$(b is the permutation of a)
LENGTH (b) =LENGTH (a) AND
(FORALL REAL x| (EXISTS INTEGER i :x=a(il)
$(For every value x of the original sequence,
the following is true) E
:CARDINALITY ({INTEGER jla(jl=x})
=CARDINALITY ({INTEGER k|b[kl=x}))
$ (The same number of copies of x are in the
original sequence a as in the resultant
sequence b)
AND $(b is in ascending order)
(FORALL INTEGER il (1<=i AND i<LENGTH (b))

tb(i1<=b[i+1]);

Figure 1
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(The reader may be tempted to conclude that our
guidelines on documentation are obvious. The two most
significant, most impressive uses of formal specifica-
tions in designing 1large systems are Neumann, et.al.
(1977) and Ford Aerospace (1978), botu specifying secure
operating system designs. Neither uses comments to the
degree we have advocated, and we feel that both would be
considerably more understandable if comments were added
using our guidelines. Some computer scientists, 1in
fact, would disagree with our guidelines for using com-
ments, feeling that such comments bias the interpreta-
tion of the specification or weaken it somehow. For
instance, one referee of an early version of Weischedel
(1979) wrote, "The English descriptions play too central
a role." Clearly, then, our guidelines are not obvious.
We have concluded that without these guidelines, fogmar
specifications of large systems are almost impossible to
understand. Of course, they do suggest an interpreta-
tion, one that is critical to understanding a formal
specification and which is valuable for informal verifi-
cation that it specifies what the author intended.
Without such documentation there is just as much chance
for misinterpretation of the specification, plus the
added drawback that they would nct be understandable.
The depth of documentation espoused here and the practi-
cal principle for deciding whether to include a comment

is a practical contribution of our research.)

3) There are several styles of writing even simple

-fl-

STRUCT_OF (INTEGER namel; CHAR name2) defines records
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formal specifications. Sometimes a simple composition
of the primitive elements of the language suffices to
define a concept. Recursive definitions can provide
short, easy to understand specifications. Another al-

ternative is to use the English definition of the object

as a pattern for a formal definition; this often leads
to definitions in terms of sets and operations on thenm.
In writing the specifications for our library, we have

found that the style that seems clearest depends on the

item being defined. Understandability of the formal

specifications should be an explicit goal of the design

phase. Since there are several styles of definition

that may be used, walkthroughs were used by us to check

not only the correctness of a specification but also its

understandability. For the three text editors we have i

-

specified, walkthroughs proved very valuable in criti=

cizing both the formal definitions and the documenta-~
tion. Understandability is not easily attained. For
each of the text editors, after compietely specifying
one, we were able to conceive of a much more understand-
able, but functionally equivalent specification by sig-
nificantly changing the style of the definitions. We

have concluded that entries for a 1library of formal

module specifications should be prepared with so much

care for understandability that casting away the first

attempt at a specification to create a more

understandable one is not frowned upon. Writing clear

nonfiction receives that much attention; so should
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creating a specification to reside in a 1library of

module specifications for repeated use.

4) In (ii) it was stated that one reason that for-
mal specifications are harder to understand than English
ones if the abundance'of concepts already defined in
English, but which have yet to be defined in formal
lanquages. Therefore, in English specifications, the
concepts may simply be referred to whereas in formal
specificationé each concept must be defined. This leads
to three natural conclusions: (a) a library will add to
the understandability of formal specifications as the
definitions in the library become familiar to designers,
(b) until such a library is built up, module specifica-
tions will be rather complex as all concepts must be
explicitly defined in a top~down way, and (c) -the
specification 1language should provide a rich set o;
primitive objects and operations on them to alleviate
the lack of concepts previously defined. The example of
figure 1 illustrates this; the definition would be much
shorter and clearer if a concept permutation(a,b) were
already defined in the language or in the library. For
that matter, the concept of a sorted sequence is so com-

mon, that its precise definition should be primitive to

the specification language.

While we have not invented "new" ideas for under-
standability, we have demonstrated that formal specifi-

cations can be made far more understandable Jjust by
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using many of the ideas espoused in structured program-
ming. The reader is invited to check this claim by com-
paring our specifications in the appendices and in

Weischedel (1979) with those of other authors.

5.4 Modifiability

Can the prototype in the library be made modifiable
enough so that minor changes can be made to tailor a
specification to a specific environment? There are two
simple techniques that we suggest which will make
specifications in the library rather modifiable.

The first 1is to structure the definitions of each
function at the interface of a module so that each par-
ticular detail that might need modification is localized
in only one subdefinition. Then only one subdefinition
need Dbe chaﬁged rather than the changes being sp;ead
throughout the specification. (This |is just the
information-hiding principle being applied to writing
definitions in a specification language rather than its
original application as a criterion for decomposing
large systems into modules.) One of the nice features
of SPECIAL 1is that several mechanisms are provided in
the language for making subdefinitions. In addition to
the ability to reference functions at the interface of
other modules, one can create subdefinitions within a
single module purely to localize information that might
be changed in the module's definition. One method |is

the DEFINITIONS feature for defining particular

b R TT— AA_..__.an
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subformulas of significance. Another is the TYPES
feature for defining a complex new data type used as
arguments to functions.

A particularly good example of this appears in
Weischedel (1979) where a formal specification is given
for an unusually sopﬁisticated pattern matching feature
for searching a file. 1In applying the principle, the
toplevel specification of the search feature precisely
defined the lines that would be found and that those
lines would be returned in order qf appearance in the
file. The syntax of the pattern language, and therefore
what it meant for the search procedure to detect an
illegal pattern, was defined in a subdefinition 1lower
than the toplevel. The semantics of the pattern
language was also localized in a subdefinition. There-
fore, both the syntax and the semantics of the patgern
language for the search could easily be modified for
different user environments,

The second idea was mentioned earlier. Namely, the
author of the specification can anticipate many poten-
tial modifications merely by analyzing what details of
the specification are somewhat arbitrary (in that the
details will vary depending on the environment in which
the module is to be used). The author can list each
detail which might need modification as an integeral
part of the documentation. As an example, consider a
queuve. In a sequential proqramming environmenf, an

attempt to remove an item from an empty queue is an
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error. However, in a multiprocessing environment, such
a condition is merely a signal that the process request-
ing information should be suspended until some other
Process adds something to the queue.

These two simple‘principles will make the proto-

types in the library rather modifiable.




6. Related Work

There are several areas of related work. The
first, of course, is research in a design methodology
using the information-hiding principle. Parnas (1974)
demonstrates how modularization of the type assumed here
can be wused to define a family of closely related
software systems, thus making maintenance and modifica-
tion of software during their life cycle much easier.
Parnas (1977b) shows the relation of formal specifica-
tions of modules to the special problems of embedded
computer systems. Neumann (1977) and Ford Aerospace
(1978) are the most significant systems designed to date
using formal specification; both are operating systems
whose designs have been formally proved to maintain

security.

..

A second, related area is research in specification
languages to support defining a module's interface in-
dependent of 1its implementation. This is frequently
referred to as abstract data types in the literature.
Liskov and Berzins (1977) provide a survey of this
research. Ambler, et.al. (1977) presents a specifica-
tion language which is very similar in semantics to the
one we have used. Algebraic 1languages have the same
purpose, though having a quite different semantics.
Examples are presented in Guttag, et.al. (1978) and Par-
nas (1977b). Yet, a third class of specification
languages is represented in the ideas of Balzer and

Goldman (1979).
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A third related area ‘of work is the National
Software Works (NSW) reported in Crocker (1975). NSW is
a library of software tools available on the ARPA net.
A software tool 1is a software system used in the
development of other software; examples include editors,
compilers, interactiv; debugging aids, simulators, docu-
ment formatters, program verifiers, and automatic test
case generators. The purpose of NSW is to enable pro-
grammers to use software tools via the ARPA network,
tools which would otherwise be unavailable to them. The
reason software tools would be unavailable otherwise is
threefold: (a) the traditional dependence of software
on a particular computer and operating system, (b) the
lack of facilities, such as sufficient memory or in-
teractive systems, at the geographical site of the pro-
grammer, and (c) the expense of obtaining propriegary
software. Thus, it shares the notion of a 1library to
aid software development; yet, its purpose is quite dif-
ferent. Its purpose 1is to make the execution of
software tools available to programmers. The purpose of
a library as we have envisioned is to make the formal
specifications of module interfaces available to
designers for reuse in developing new software. Formal
specifications from such a library would enable discip-
lined design of large systems and rigorous design vali-

dation by a validation team.
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Appendix I

This section is written to help the reader under-
stand a specification written in SPECIAL (SPECIfication
and Assertion Language) Roubine and Robinson, (1976).
The discussion of SPECIAL will not encompass all of the
language's features. The explanation is intended as a
guide in understanding the examples which accompany this
report.

The design of a large software system requires
breaking the system into component parts called modules.
Parnas (1972) describes a criterion cal}ed the
information-hiding principle for deciding how to decom-
pose a system into modules. According to this design
principle, any decision which may need to be modified
during the system's life cycle should be localized in a
single module. 1In that way, if the results of any deci:
sion implemented should be changed during the system's
life cycle, only the one corresponding module must be
changed, thereby greatly simplifying maintenance.

To achieve this, a designer must specify the inter-
face of the module completely enough that any other
module or any user program can call the module and know
precisely what the module will do. However, the inter-
face must be specified in such a way that other modules
or programs do not depend whatsoever on how the module
performs the task requested. SPECIAL i{s a language
designed specifically for these goals. To implement

such a module, one writes a set of closely related
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programs and data structures conforming to the interface
specified.

One can view such a module as an abstract machine,
abstract in the sense that its implementation is unknown
to other modules, and.abstract in the sense that it is
most probably implemented in software rather than
hardware. SPECIAL is based on the analogy of an
abstract machine. A real machine, such as a particular
computer, is always in some state, represented by the
contents of the CPU registers and the contents of main
memory. Similarly, a module or abstract machine |is
always in some state, represented by a group of values.
One can have any portion of a computer's state printed,
for instance, output of the value of any main memory
location, of a general register, or of the program
counter. By the same token, SPECIAL lets a desi;ner
specify functions called VFUNs which output or return
the value of any of the group of values forming its
present state. A computer also has operations which,
given the current state, change the state; for instance,
an ADD instruction on the PDP-11 takes the sum of the
contents of two memory locations and stores it back in
one of the memory locations, thereby changing the state
of the machine. 1In the same way, a SPECIAL module has a
number of operations (called OFUNs) at 1its interface
which change the state of the abstract machine or
module, given its current state, by changing some of the

values comprising to current state.
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The heart of a module specification in SPECIAL,
therefore, is a list of functions available at the in-
terface. There are several other parts to a specifica-
tion, which are not as central as the list of functions.

Each specification describes some module of a
software system. SbECIAL's reserved words (such as
MODULE, TYPES, DEFINITIONS and IS) are denoted here by
capital letters. A module is preceded and followed by
the words MODULE and END_MODULE. The name of the par-
ticular module immediately fcllows the word MODULE. The
remainder of the specification is hroken up into para-
graphs or sections, each beginning with a reserved word
such as TYPES, DECLARATIONS, PARAMETERS, DEFINITIONS and
FUNCTIONS. The paragraphs are optional. Therefore, the
structure of a module is as follows:

MODULE <module_name>
TYPES

DECLARATIONS

L4

PARAMETERS

DEFINITIONS

FUNCTIONS

END_MODULE

Comments may appear throughout each module. A
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comment is preceded by a "$" and is delineated by match-
ing left and right parentheses. Comments have no effect
on the meaning of the specification but only serve as an
aid to understanding.

The best way to Fead a module is to study the
PARAMETERS section first followed by the FUNCTIONS.
DEFINITIONS, TYPES and DECLARATIONS paragraphs should be
referenced as needed. Comments at the beginning of a
specification will suggest an alternative plan when it
Seems appropriate.

The specification lanquage defines objects and
operations on them. Associated with each object is a
name and a type. The type of an object defines a set of
legal values that the object may have.

Primitive types are disjoint sets of primitive

values which may be either predefined or designatorss

Predefined types include BOOLEAN, INTEGER, REAL and CHAR

(character). A designator type is a class of names for
user-defined objects. This new class of objects is
defined by a particular module and can only be created
or modified using functions in that module.

New types can be formed by applying type-
constructors to the primitive types. The type-
constructor VECTOR_OF creates a type which is a vector
(or randomly accessible sequence) of objects for a given
type. For example, the type VECTOR_OF CHAR is the set
of all possible sequences of characters. Another type-

constructor is STRUCT OF, which defines a record.




3) There are several styles of writing even simple
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STRUCT_OF (INTEGER namel; CHAR name2) defines records
consisting of two fields; the first contains an integer
and may be accessed by the name namel. The second field
contains a character and may be accessed by using name2.
SET_OF creates a type which is a set of objects of a
given type. A

The purposes of the TYPES paragraph are explained
with the following example.

TYPES

graphs: DESIGNATOR;

sequence: VECTOR_OF INTEGER;
As a result of this TYPES paragraph, a new primitive
data type known as "araphs" is introduced. Since it is
a DESIGNATOR, its values come from a unique set of
names. In additien, the name "sequence" is associated
with the type specification VECTOR_OF INTEGER. e

The objects defined by the specification lanquage
have a scope as well as a name and a type. Once an
object has a name and a type associated with it, the
scope dictates which parts of the module may reference
that name. The DECLARATIONS paragraph is one way to
associate a name with a data type. Fur thermore, the
scope of that name will be global, i.e. its type will be
the same throughout the entire module.

DECLARATIONS
graphs digraph, cyclic;
INTEGER i ;

"Digraph" and "cyclic" are both objects of type "graphs"
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and "i" is now declared as an INTEGER.

The PARAMETERS paragraph is used to give an object
a value when the module is initialized. The value is a
constant which would receive a particular value only
after implementation ?f the module, when object code |is
generated. Parameters are global and can therefore be
referenced throughout the module.

PARAMETERS
INTEGER max number of graphs;
$(The maximum allowable number of "graphs")
"Max_number of graphs" can be used throughout the module
to ensure that the total number of "“graphs" never
exceeds that value.

The DEFINITIONS paragraph is purely for the con-
venience of the designer and reader. It is a macro
facility. The named object, when it 1{is wused in -the
specification, 1{s replaced by the particular expression
which it represents. For example,

DEFINITIONS

REAL square_root (REAL x; REAL toller)

IS $(Returns the square root of a number, x, within a

given tollerance toller.)
IF x<0 OR toller<=0
THEN ?
ELSE SOME REAL r |
r*r-toller<=x AND
r*r+toller>=x;

The name of this particular definition |is
"square_root." The value defined by it has type REAL.

The 1list following the name contains the formal arqu-

ments. Each time "square root" {s used it must be
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immediately followed by a list of actual arquments that
agree in number and type. Using "square root" causes
the expression following the word IS to be textually
substituted for "square root." "Square root" «can be
referred throughout the entire module.

It is apparent tgat the use of the DEFINITIONS
paragraph can extend beyond convenience. It can cut
down on errors when definitions are long or used repeat-
edly. In addition, should the definition of
"square_root" be changed, it is changed 1in one place
rather than in each place it is used.

The SOME construct used above will be discussed
later. For anyone familiar with a high level program-
ming language, the "square root" definition is readable
with practically no further explanation. The only ex-
ception is thé symbol "?", which represents the un{que
value "undefined." "“Square root" evaluates to "unde-
fined" when a square root of a negative number is {indi-
cated or if the tollerance 1is less than or equal to
zero.

Objects "x" and "toller" do not have to be declared
in the DECLARATIONS paragraph. An object may be bound
to a type when it is used. For "x" and "toller", the
scope is the definition of "“square_ root." It is not
important while reading a specification to know the
scope of each object, just its type. 1In the example of
"square_root", the binding of "x" to type RFAL occurs in

the definition. If there was no binding of "x" in

- ik s "“.“..r.._ e i A
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"square_root", the reader would have to look elsewhere
(perhaps in the DECLARATIONS paragraph) in order to dis-
cover the type of "x".

SPECIAL describes abstract machines. In other
words it presents the functional capabilities of a com-
putation as opposed té the implementation details. The
last and most important paragraph contains a description
of the functions available at the interface of the
module. It is entitled FUNCTIONS.

The state of a module or abstract machine at any
given instant is the value of all objects defined by the
module's specification. This state changes when at
least one of the objects it manipulates changes.
SPECIAL's three types of functions reflect this view of
a process. They are VFUN, OFUN and OVFUN. VFUNs (value
functions) refurn a value, but do not change the sEate
of the module. OFUNs (operation functions) cause state
changes, but return no value. The last cateqory, OVFUN,
causes a state change and returns a value.

Picture a module at some level in a hierarchically
designed system. The functions 1in this paragraph
describe the interface between the module and other
modules that may reference it. The only communication
to this module is accomplished via the functions.

For each function, one may specify conditions under
which it is invalid to call the function. These are
called EXCEPTIONS and are analogous to exception condi-

tions or instruction traps on computers; f€for instance,

. e " 3 - e . > 2 R e
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the division instruction(s) on most computers generate
an exception condition on division by zero. For the
OFUN functions, which are operations changing the state
of a module, the new state must be defined precisely in
terms of the o0ld state and the arquments to the new
function; the changes in the various components of the
state of the machine are given as EFFECTS. For the VFUN
functions, which represent components of the state of
the machine, the value must be defined precisely. Some
VFUN functions represent components of the state not
accessible to the wuser, but necessary to define the
semantics of other functions; these are termed HIDDEN.
(The example of a stack indicates the need of HIDDEN
functions. Though only the top element is accessible to
the wuser, the complete state of the module depends on
the whole sequence of items stored in the stack.) ) .

The following example describes the characteristics
of the‘different function types. Although a bit con-
trived, it will illustrate the main ideas. The example
defines a single "register." It can be initialized to an
INTEGER value, have another INTEGER value added to it or
have twice its value returned. Assume that 1{in the
PARAMETERS paragraph, "max_register_value" has been
declared as an INTEGER. It is intended to be the max-
imum absolute wvalue that can be stored in the "reqis-
ter."

FUNCTIONS

VFUN register( ) -> INTEGER value;
S$(Returns the value stored in the "register".)
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HIDDEN;
INITIALLY
value=?;

OFUN load register (INTEGER i);
$(Stores 1 in the "register.")
EXCEPTIONS
max_register_value<i;
max register value<-ij;
EFFECTS L2l
'‘register( )=i;

OVFUN add (INTEGER i) -> INTEGER value;
§(Adds "i" to the contents of the "register" and returns
the new value as the value of the function.)
EXCEPTIONS
register( )=?;
max_register_value<register( )+i;
max_register_value<-(register( )+i);
EFFECTS
value='register( );
'register( )=register( )+i;

VFUN double ( ) =-> INTEGER value;
$(Returns double the contents of the "register.")
EXCEPTIONS
register( )=?;
DERIVATION
register( )*2;

..

The first function is a VFUN called "register,”
which has no formal arguments. The value returned by
this function is an INTEGER as indicated by the informa-
tion following the symbol "->". "Value" has been bound
to type INTEGER. The scope of its binding is the func-
tion definition. Corresponding to the discussion of the
object "x" in the example of "square-root”, "value"

could have been bound to INTEGER elsewhere.

After the comment is the reserved word HIDDEN,
VFUNs may be hidden as the reserved word indicates or

visible. Visible VFUNs are available at the interface

3 whereas hidden VFUNs are not available outside of the
|

module. Hidden VFUNs are wused by the designer for
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purposes of description.

The reserved word INITIALLY indicates that this
VFUN is primitive. This means that an initial value for
the VFUN exists. The initial value for "“register" |is
"?" or "undefined." All of the primitive VFUNs together
define the state of tﬂe module.

The next function, "load register", is an OFUN; it
therefore causes a state change. It takes a single
INTEGER parameter. As the .comment indicates, the
parameter's value is to be placed into the "reqgister.”

The next keyword in "load_register" is EXCEPTIONS.
An EXCEPTIONS section appears in all except HIDDEN func-
tions. They describe conditions under which the func-
tion cannot be called. If any of the statements (excep-
tion conditions) in the EXCEPTIONS section are true,
then no state change takes place and/or no value‘ is
returned. As was previously stated,
"max_register_value" is a parameter which represents the
maximum absolute value storable in "register." The two
exceptioniconditions prevent an integer which is outside
the acceptable range from being placed into the "regis-
ter."

If no exception conditions prevent the function
from executing, the EFFECTS section describes the state
change. In defining a state change, we must refer to
the new values for components (VFUNs) of the state in
terms of o0l1ld values. Placing the symbol quote before

the function name "register"™ is the wvalue 1in the new
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state, 1i.e. the value returned by a call to "register"
after the call to "load_register." Therefore, the effect
of this OFUN is that a subsequent call to "register"
will return the value "i". Note, the new state of the
process is completely‘represented by the values returned
by all érimitigg VFUNs.

The next function is an example of an OVFUN func-
tion. "Accumulate" takes one argument, an INTEGER, and
returns an INTEGER value. The comments indicate the
effects this function has on the state as well as the
value returned. Since this function is visible, there
is an EXCEPTIONS section. "Accumulate® cannot effect
the state of the process if the contents of "register"
is "undefined." This is controlled by the first excep-
tion conditipn. The second and third exception condi-
tions restrict the new value in "register" to be wighin
the acceptable range. Exception conditions have an ord-
ering: the first is checked, then the second and so on.
This 1is unlike the EFFECTS section where all changes
occur simultaneously. As a result of a call to "accumu-
late," the new value returned by "register" is equal to ‘
the value returned by "register" before this function
call plus "i." Lastly, the value returned is the value
that will be returned by the function "register" after
the call to "accumulate."

"Double register" is the last function. It is a
VFUN which has an empty argument list and returns an

INTEGER value. The only exception condition is that the
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"register" cannot be "undefined." Recall that the first
VFUN “"reqister" was primitive. Unlike "register," the
function "double register" is derived (as indicated by
the keyword DERIVATION). Its value 1is defined or
derived 1in terms of other VFUNs. The value returned by
"double_register" is the current value of "register"
times two.

In conclusion, the three types of functions are
VFUNs (value functions), OFUNs (operation functions) and
OVFUNs (operation and value functions). Each VFUN 1is
either hidden or visible, depending on whether it is
available outside of the module. The wvalue returned

from a VFUN is derived or primitive. OFUNs and OVFUNs,

like visible VFUNs, have EXCEPTIONS or conditions under
which they 'will not be executed. Should no exception
condition arise, the effects of an OFUN or OVFUN -are
described in the EFFECTS section.

A few more language details must be explained. The
majority of SPECIAL's constructs are intuitively
equivalent to high level language expressions (i.e. IF-
THEN-ELSE). The remaining expressions that are particu-
lar to the specification language and that appear in the
enclosed examples will now be described.

As previously mentioned, type-constructors are used
to build new types from primitive ones. Three type-
constructors are: VECTOR_OF, SET _OF and STRUCT_OF.

Vectors are defined explicitly,

VECTOR (2 4 6)
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or implicitly,
VECTOR (FOR j FROM 1 TO 3: 2+*j).

These two expressions define the same sequence of three
numbers. Note that the object "j" in the implicit vec-
tor need not be deélared as INTEGER; this is assumed.
If A is a vector, then LENGTH(A) returns the number of
elements in A. The third element in A may be referenced
by A[3]).

Sets may be defined implicitly such as the follow-

ing expression:
{INTEGER i | i>3 AND i<=7}.

This set contains elements 4, 5, 6 and 7. The symbol
"I" is read as "such that." The entire expression is
read "the set‘of INTEGER i such that i is greater thén 3
and i is less than or equal to 7." CARDINALITY returns
the number of elements in the set which is its operand.
The SOME expression returns any value having a
given property (or equivalently, satisfying a given

predicate. For example,
SOME x | T (x)

translates as "some x such that T(x) is true."
Assume a new type called "record" is defined by the

statement:

record: STRUCT OF (INTEGER identification; TINTEGER

value)




S ———

e

————.

=Ty

If the object A is of type "record," then the expression
A.value references the second item in the structure.
A=STRUCT(1;3) assigns "A" the value of a structure where
A.identification equals 1 and A.value equals 3.

A DESIGNATOR is 9sed to define a set of names to
reference elements of a new class of objects. The func-
tion NEW applies to designators only. NEW(t) generates
a name that has never been used before. "t" must have
been defined as a designator in the TYPES paragraph by
the expression t: DESIGNATOR.

The LET expression provides a local definition of a

value. The scope of the definition is the expression

LET INTEGER j =
CARDINALITY ({ INTEGER k |
k>0 AND -
k<501})
IN

<expression>

The object "j" is defined and bound for the duration of
the expression following the keyword IN. (Of course,
the value of j in the example happens to be 49.)

Lastly, SPECIAL has an expression for universal

quantification.
FORALL x | T(x): U(x)

is read "forall x such that T(x) is true, Q(x) is true."
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Appendix II
Stacks

A. Keywords: stack, pushdown, LIFO, LIFO queue

B. References

The concept of a stack 1is defined in many texts. One is
chapter three of Fundamentals of Data Structures, by Ellis
Horowitz and Sartaj Sahni, Computer Science Press, Inc., 1976.
For ideas on implementing the module, chapters three and four of
the same text present several strategies.

C. Hidden Infermation

This module hides all decisions about implementing a
stack. For instance, users of the module cannot answer the
following questions: Are the stacks implemented using an array or
linked list? Do all stacks share one array or does each have its
own array? How many words, bytes, or bits are wused per data
element in the stack?

D. Description (an aid to understanding the definition, though
the definition is the arbitrator of all 1issues or questions
raised)

This moduls manages any number of stacks up to the
implementation constant "maxstacks." The data structure
represented by a stack maintains a sequence of items. One can
add an item to the sequence using "push", which adds the item at
one fixed end of the sequence. An item may be removed from the
sequence at that same fixed end using "pop", which besides
removing the item, gives its value as the value of the procedure
call. One may obtain that value without removing the data item
from the sequence via "top." The only other operation is to ask
whether there are any elements in the sequence or not, via
"empty." The maximum length of any sequence is "maxsize." For
this specification, the data items are integers whose absolute
value is bounded by "maxelement." New stacks may be created and
old stacks released via "create_stack" and "delete_stack."

Note particularly that the function "stack(s)" is HIDDEN.
Therefore, it can never be called, nor does it imply an
implementation using arrays or sequential memory. It merely
indicates the effects of "push" and "pop" on the sequence of
items. The specification implies that only the element most
recently entered into the data structure may be accessed or




removed; this property has led to the phrase "last-in-first-out"
or LIFO.

E. Modifications

Stacks of course do not have to be sequences of integers.
The declarations which must be changed for REALs, CHARs, or
whatever is desired are marked by comments in the specfication.

§ For certain applications, one may wish to access any
‘ element in the sequence, but add or delete 1items at only one
fixed end. For this, one may add another function:

VFUN value(s;INTEGER j)->i;
$(random access read of data
items in stack)
EXCEPTIONS
stack(s)=?;
j<1 OR j>size(s):
DERIVATION
stack(s) [j]:
$(Note that value(s;l) is the
first element added to the
sequence, not the last one.) -

Another function one may wish to add to the interface is
the number of elements in a stack. "Size" in the DEFINITIONS
section suggests how to add that feature.

F. Alternatives

In some applications such as implementations of
programming languages, a pointer into the stack may be desirable.
The pointer may be wused as a 1local reference point for
selectively reading values stored 1in the stack or removing many
items simultaneously. Refer to the specification stackl for such
a feature.

i, S, il e aistit
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MODULE stacks

TYPES

stack_name: DESIGNATOR;

DECLARATIONS

INTEGER i1; $( This is for a stack of integers. The declarations
must be changed for a different type of data element.)
stack_name s;

PARAMETERS

INTEGER max_stack_size $( maximum size of any stack) ,
max_number of stacks §$( maximum number of stacks permitted),
max_element_value $( maximum absolute value storable in

any stack) g
$( For a stack of a different data type
than INTEGER, this definition must be
changed.);

DEFINITIONS

INTEGER number of stacks
IS CARDINALITY({ stack_name s | stack(s) "= 2 });
INTEGER size_of_stack(s) IS LENGTH(stack(s)):

FUNCTIONS

VFUN stack(s) =-> VECTOR_OF INTEGER v;
$( Represents contents of stack s. This declaration of
INTEGER must be changed for a different type of data |
element.)
HIDDEN;
INITIALLY
v =2

VFUN empty(s) =-> BOOLEAN b; $( This function returns true, if |
stack s is empty, otherwise false.)
EXCEPTIONS
stack(s) = ?;
DERIVATION {
size_of_stack(s) = 0; f
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VFUN tonfs) -> i; §$( Returns the value most recently pushed onto
stack s.)
EXCEPTIONS
stack(s) = ?;
empty (s);
DERIVATION .
stack(s) [size_of_stack(s)];
$( One might add another derived VFUN which is just the
macro size(s) so that the number of elements in
the stack is accessable.)

OVFUN create_stack() -> s; $( Initializes a new stack.)
EXCEPTIONS
number_of_ stacks >= max_number_of stacks;
EFFECTS
s = NEW(stack_name);
'stack(s) = VECTOR():;

OFUN delete_stack(s); $( Delete makes stack s and its contents
unavailable.)

§ EXCEPTIONS
' stack(s) = ?2;
EFFECTS
'stack(s) = ?;

OFUN push(s; 1i); .
$( Push adds i to the stack s, thereby quaranteeing that
s is not empty, and making i the element returned by top
(s).)
EXCEPTIONS
stack(s) = ?;
size_of_stack(s) >= max_stack_size;
i <(0 - max_element_value) OR i > max_element_value;
EFFECTS
'stack(s)
= VECTOR(FOR j FROM 1 TO size_of_ stack(s) + 1
: IF j <= size_of stack(s)
THEN stack(s) [J]
ELSE 1i);

OVFUN pop(s) -> i; $( Removes item last pushed onto stack s.)

EXCEPTIONS

stack(s) = ?;

empty (s) ;
EFFECTS

i = top(s):;

'stack(s)
= VECTOR(FOR j FROM 1 TO size of stack(s) - 1
: stack(s) (j1);

END_MODULE
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Appendix III
Queues

A. Keywords: queue, FIFO

-

B. References

The concept of a queue is defined in many texts. One is
chapter three of Fundamentals of Data Structures, by Ellis
Horowitz and Sartaj Sahni, Computer Science Press, Inc., 1976.
Chapters three and four of the same text present several
strategies.

C. Hidden Information

This module hides all decisions about how the queue is
represented in memory. For instance, one does not know whether
an array is wused, a 1linked list, or some other structure in
memory. Perhaps each queue has its own memory space, or perhaps
they share a common memory pool. Whether more than one queue
element 1is packed per word 1is also hidden. Even though the
specification appears to imply that the newest element of the
queue enters at the left end, this is not necessarily true.

.e

D. Description (an aid to understanding the definition, though
the definition is the arbitrator of all 1issues or Qquestions
raised)

The module manages any number of queues up to
"max_number of queues." A queue is a sequence of data items very
much like a line of individuals at a bank teller's window. 1Items
enter the seguence only at the back end of a queue; "enqueue" is
the operation to add a data value to the queue. The first value
placed in the queue is the first to be removed; the last entered
is the 1last to be removed. (This has led to 1its name as
"first-in-first-out" or FIFO.) "Dequeue" removes one item from
the queue, similar to the person at the front of a line being the
first to leave. "Dequeue" returns as a value that data item
which 1is removed. To merely read the value which would be
removed by the next use of "dequeue", the function "front" is
provided; the value remains in the gqgueue, changing nothing.

Only one item may be examined in the queue at any time.
Also, the relative order of the elements with respect to one
snother cannot be changed and is determined solely by the order
in which they were enqueued.




To find out whether the queue has any elements 1in it,
"empty" is used; it does not change the queue at all. If you
want a new queue, "create_ queue" provides as a value the name of
a new gqueue. To release a queue named g, "abolish_queue" is
used.

The maximum sequence length is "max_queue_size." In this
specification, all wvalues in the queue are integers whose
absolute value is bounded by "max_element value."”

Especially note that function "queue(q)" is HIDDEN. Thus,
one can never refer to such a function; it 1is not part of the
interface. Though, the specification may seem to suggest an
implementation using an array, following that thought would lead
to a very inefficient implementation, causing a shift of every
queue element with each "enqueue." In fact, all that 1is implied
by the specfication 1is that the relative order of the queue
elements is exactly the order in which elements were enqueued and
that only the item available through "front" or "dequeue" may be
read.

A AT o AT e 5

E. Modifications

If data wvalues other than integers are desired, several
) declarations, which are commented in the specification, must be
' changed. If a count of the number of elements in a .queue is
desired, "size" should be made a VFUN rather than its present

status as a DEFINITION.

F. Alternatives

For certain applications, we may wish to assign some
importance, weight, or priority to the elements, and order them
based on that first, then on order of entry. See the
specification of priority queues for such a data structure.




MODULE queues

TYPES

queue_name: DESIGNATOR;

DECLARATIONS

INTEGER i; $( This is for a queue of integers. This declaration
must be changed for a different type of data element.)
queue_name q; ‘

PARAMETERS

INTEGER max_queue_size $( maximum size of any queue) ,
max number of _queues $( maximum number of queues) ,
max element value
$( The maximum absolute value storable in any queue. For
a queue of a different type other than INTEGER, this
definition must be changed.);

DEFINITIONS -
INTEGER number_of queues

IS CARDINALITY({ queue_name q | queue(qg) ~= 2 });
INTEGER size(q) IS LENGTH(queue(q));

FUNCTIONS

VFUN queue (q) -> VECTOR OF INTEGER s;
$( This declaration of INTEGER must be changed for a
different type of data element. This is the sequence
of elements added to g. The most recently added
is at queue(q) [(1]. The oldest entry is the last
element in the sequence.)
HIDDEN;

INITIALLY
s = ?2;

VFUN empty(q) -> BOOLEAN b; $( Value is true if queue q is empty,
otherwise false.) :
EXCEPTIONS
queue (q) = ?;
DERIVATION
size(q) = 0;

—— ’ g T C——— PR S P e




VFUN front(q) -> i; §$( Returns value least recently enqueued or added
onto queue q, and which has also not been
subsequently dequeued.)

EXCEPTIONS
queue (q) = ?;
empty (q) ;
DERIVATION
queue (q) [size(q)];
$( One might add another derived VFUN which is just the
macro size(q) so that the number of elements in
any queue can be accessed outside of the module.)

OVFUN create _queue() -> q; $( Initiates a new queue, returning the
name of that queue as the function's

value.)
EXCEPTIONS
number_of queues >= max_number_of queues;
EFFECTS

q = NEW(queue_name);
‘queue (q) = VECTOR():;

OFUN abolish_queue(q); $( Makes queue q and any contents
unaccessable.)
EXCEPTIONS
queue (q) = ?;
EFFECTS
'queue (q) = ?;
OFUN enqueue (q; i)
$( Enqueue adds i to the queue g, thereby guaranteeing
that q is not empty. i would be returned by front only
after preceding enqueued values have been removed
using dequeue.)
EXCEPTIONS
queue (q) = ?;
size(q) >= max_queue_size;
i <(@ - max_element_value) OR i > max_element_value;
EFFECTS
'queue (q)
= VECTOR(FOR j FROM 1 TO size(q) + 1
: IF j > 1 THEN queue(qg)[j - 1] ELSE i);

OVFUN dequeue(q) =-> i; $( Removes item least recently added by
enqueue onto queue q.)
EXCEPTIONS
queue (q) = ?;
empty (q) ;
EFFECTS
i = front(q);
'queue (q)
= VECTOR(FOR j FROM 1 TO size(q) - 1l: queue(q)[j));

END_MODULE
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Appendix IV
Trees

A. Keywords: tree, binary tree, hierarchy, hierarchical data
structure

B. References

The concept of a tree 1is defined in many texts. One is
chapter five of Fundamentals of Data Structures, by Ellis

—— — - —— —————— - — - —————— - -

Horowitz and Sartaj Sahni, Computer Science Press, Inc., 1976.

C. Hidden Information

' - This module hides all decisions about how the tree is
represented in memory. For instance, one does not know whether
an array 1is wused, a linked 1list, or some other structure.
Perhaps each tree has its own memory space, or perhaps they share
a common memory pool. Whether more than one tree element is
packed per word as well as the specific algorithms for performing
inorder, preorder and postorder traversals are also hidden.

D. Description (an aid to understanding the definition, though
the definition is the arbitrator of all issues or questions
raised)

This module manages any number of binary trees up to
"max_number_of trees." A binary tree is a finite set of zero or
more nodes. A non-empty binary tree has a special node known as
the root. Up to two nodes can be directly associated with a
node. They are called the leftson and the rightson of that node.
This node is then designated as the father and no other node may
be the father of either the leftson or rightson. WNodes can have
a unit of information associated with them. 1In this module the
information is an integer that has a maximum absolute value of
"max_value." Finally, the maximum number of nodes on any binary
tree is "max_number_of nodes."

A tree or its contents cannot be accessed directly at the
inter face. Two HIDDEN functions are provided in order to
describe the contents of a tree and to reflect the changes which
occur to it. They are “tree" and "node."

The function "create_tree"” initiates a new tree. At this
point the new tree contains no nodes. "Initialize_root" adds a
root node to an empty tree. A leftson or rightson may be
associated with an existing node via the functions




"initialize_left_son" and "initialize_right_son."

Each node of a particular tree has an identification
associated with it. The functions "“father_of node", "left son",
and "right_son" return the identification for the node having
that relationship to the given one. "Set value" and
"value_of node" store and retrieve node values 1in the tree.
"Exists_left_son" and “exists_right_son" are predicates which
return true 1f a node has a 1leftson or rightson, respectively.
To delete a node the function "delete_node" should be used.
"Delete_tree" will delete an entire tree thereby making it and
its nodes unavailable. Lastly, three functions are provided for
tree traversals. The tree traversals visit each node in the tree
exactly once, returning the node identifiers for each node in the
order visited. The three orders are preorder, inorder and
postorder which correspond to prefix, infix and postfix forms of
an  expression. The  functions are  "preorder_traversal",
"inorder_traversal" and "postorder_traversal."

E. Modifications

Trees, of course, do not have to contain integers as
values of the nodes. The aopropriate declarations would have to
be changed.
F. Alternatives -

In some applications, such as certain sorts, the more
general n_ary tree, as opposed to the binary tree, is desirable.
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MODULE trees

$( It is probably best to study the specification in the
following order: node structure under TYPES first;
create tree and initialize root for creating a new tree;
1n1t1a11ze left son or tnitialize _right_son to set up
children; ~father of _node, left_son, and rlght son to
find a node having that relationship to the given one;
set_value and value_of node to store and retrieve values
in the tree; and the remaining features.)

TYPES

tree_name: DESIGNATOR;
node structure:
STRUCT_OF(INTEGER father;
INTEGER value;
INTEGER leftson;
INTEGER rightson);
$( For 2 tree holding a different data type other than
INTEGER, the declaration for value must be changed.)
$( A node has four pieces of information potentially:
the. identity of the father, the value stored at the node,
the identity of a leftson, and the identity of a rightson.
This fact is indicated by our use of the STRUCTure
construct; the specification refers to any of the four
pieces of information in a structure s by writing s.father
for the father information, s.value for the value, etc.)

DECLARATIONS

INTEGER id, i, j:
tree_name t;
node_structure n;

PARAMETERS

INTEGER max_number_of trees, $( maximum allowable number of trees)
max number of nodes, $( maximum allowable number of nodes
on a tree)
max value
“$( The maximum absolute value storable in any node. For a
data type other than INTEGER, this declaration must be
changed.);
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DEFINITIONS

SET_OF INTEGER nodes_in_tree(t)
IS { INTEGER id | node(t, id) == 2 };
INTEGER size_of_ tree(t) IS CARDINALITY(nodes_in_tree(t));
INTEGER number of trees
IS CARDINALITY({ tree name t | tree(t) ~= 2 }); ]
VECTOR_OF INTEGER combine _vectors (VECTOR_OF INTEGER vl; 1
VECTOR_ “OF INTEGER v2;
VECTOR_OF INTEGER v3)
IS $( A vector which is the concatenation of vectors
vl, v2 and v3.)
| VECTOR (FOR j
‘ FROM 1
TO LENGTH(vl) + LENGTH(v2) + LENGTH(v3)
g : IF j <= LENGTH(vl)
- THEN v1[j]
ELSE IF j <= LENGTH(vl) + LENGTH(v2)
THEN v2[j - LENGTH(vl)]
ELSE v3[j -(LENGTH(vl) + LENGTH(v2))]);
VECTOR_OF INTEGER preorder(t; id)

IS “$( A vector of integers, which represents all node
identifiers for the tree t, in a preorder traversal. id is
the identifier of the root node of the tree.)

) IF id = ?

THEN VECTOR()

ELSE combine_vectors (VECTOR(id), -
preorder (t, node(t, id).leftson),
preorder (t, node(t, id).rightson));

VECTOR_OF INTEGER inorder (t; id)

IS §$( A vector of integers, which represents all node
identifiers for the tree t, in an inorder traversal. id is
the identifier of the root node of the tree.)

IF id = ?

THEN VECTOR ()

ELSE combine_vectors(inorder (t, node(t, id).leftson),
VECTOR(id),
inorder (t, node(t, id).tightson));

VECTOR_OF INTEGER postorder (t; id)

IS “$( A vector of integers, which represents all node
identifiers for the tree t, in a postorder traversal. id is
the identifier of the root node of the tree.)

IF id = ?

THEN VECTOR()

ELSE combine_vectors(postorder (t, node(t, id).leftson),
postorder (t, node(t, id).rightson),
VECTOR (id) ) ;

S

INTEGER root_id(t)
1S $( The identifier of the root node for tree t.)
SOME INTEGER i | father_of node(t, i) = 8;
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FUNCTIONS

VFUN node(t; i) -> n; $( Returns the node n in tree t with
identifier i.)
HIDDEN; .
INITIALLY
node(t, 1) = ?;

VFUN tree(t) -> BOOLEAN b; $( Predicate, which returns true if
tree t exists, otherwise false.) ;

HIDDEN;
INITIALLY
FALSE;

VFUN father_ of node(t; i) -> id;
$( Returns the identifier for the node which is the
father of node i on tree t. Returns zero for the root.)

EXCEPTIONS

NOT tree(t):;

node(t, 1) = ?;
DERIVATION

node(t, i).father;

VFUN left son(t; i) =-> id; $( Returns the identifier for the node
= : which is the leftson of node i on A
tree t.) ShaT)
EXCEPTIONS
NOT tree(t);
node(t, i) = ?2;
NOT exists_left_son(t, i);
DERIVATION
node(t, i).leftson;

VFUN right son(t; i) => id; $( Returns the identifier for the node
5 which is the rightson of node i on
tree t.)

EXCEPTIONS
NOT tree(t);
node(t, i) = ?;
NOT exists_right_son(t, i);

DERIVATION
node(t, i).rightson;

VFUN exists_left_son(t; i) -> BOOLEAN b;
$( Predicate which returns true, if node i on tree t has
a leftson, otherwise false.)
EXCEPTIONS
NOT tree(t);
node(t, i) = ?;
DERIVATION
node(t, i).leftson “= ?;




VFUN exists rxght son(t; i) -> BOOLEAN b;
$( Predicate which returns true, if node i on tree t has
a rightson, otherwise false.)
EXCEPTIONS
NOT tree(t):;
node(t, 1) = ?;
DERIVATION
: node(t, i).rightson ~= ?;

VFUN value_of node(t; i) -> j;
i $( Returns the stored value of node i on tree t. The type

of j must be changed for a data type other than INTEGER.)

EXCEPTIONS
NOT tree(t);
node(t, i) = ?2;
node(t, 1).value = ?2;
DERIVATION
node(t, 1).value;

OFUN delete_node(t; i); $( Deletes leaf node i on tree t.)
EXCEPTIONS
NOT tree(t):;
node(t, i) = ?;
exists_left_son(t, 1i);
exists rlght son(t, 1);
EFFECTS >
IF father_of node(t,i) = 9 =
THEN $( The node is the root node.) 'node(t, i) = ?
ELSE IF node(t, father_of node(t,i)).leftson = i
THEN $( The node is the leftson of some node.)
'node(t, father_of node(t, i)).leftson = ?
AND 'node(t, i) = ?°
3 ELSE $( The node is the rightson of some node.)
‘node (t, father_of node(t, i)).rightson = ?
AND 'node(t, i) = ?;

OFUN delete_tree(t); $( Deletes an entire tree.)
EXCEPTIONS
NOT tree(t):
EFFECTS
'tree(t) = FALSE;
FORALL i | node(t, i) "= ?: 'node(t, i) = ?;

OVFUN create_tree() -> t; $( Initiates a new tree, returning the
name of that tree as the function's

value.)
EXCEPTIONS
max_number_of trees <= number_of_ trees;
EFFECTS

t = NEW(tree_name) ;
'tree(t) = TRUE; $( t is now a valid tree_name, but the

tree is empty for now)




OVFUN initialize root(t) -> id;

$( Allows a value, leftson, or rightson to be
associated with the root of tree t. The value returned

is the identifier for the root. The father of the root
is set to zero.)

EXCEPTIONS
NOT tree(t):;
size_of tree(t) ~= 8;
EFFECTS
LET INTEGER j | j ~= @ AND node(t, j) = ?
$( j was not in use as a node name)
IN 'node(t, j) = STRUCT(9, ?, ?, ?) AND id = j;
$( j becomes a root since its father is 0. It has no
leftson, no rightson, nor any value stored at it.)

OVFUN initialize left son(t; 1) -> id;

$( Adds a new node to tree t, returning the identifier

for that node as the function's value. The new node is the
leftson of node 1i.)

EXCEPTIONS

NOT tree(t):

node(t, i) = 2?;

exists left_son(t, i);

size_of tree(t) >= max_number_of_ nodes;
EFFECTS

LET INTEGER j | j ~= @ AND node(t, j) = ?
$( j was not in use as a node name) 5
IN 'node(t, j) = STRUCT(i, ?, 2, ?) $( jJ has a father 1i;

its leftson, rightson,
and stored value are all
undefined)

AND 'node(t, i).leftson = j $( this defines that i has j

as its leftson)
AND id = j;

st




OVFUN initialize right_son(t; i) -> id;
$( Adds a new node to tree t, returning the identifier
for that node as the function's value. The new node is the
rightson of node i.)
EXCEPTIONS
NOT tree(t):;
node(t, i) = ?2;
exists_right_son(t, i);
size_of_tree(t) >= max_number of nodes;
EFFECTS i
LET INTEGER j | j ~= 0 AND node(t, j) = ?
$( j was not in use as a node name)

IN 'node(t, j) = STRUCT(i, ?, ?, ?) $( j has a father 1i;
its leftson, rightson,
and stored wvalue are all
undefined)

AND 'node(t, i).rightson = j $( this defines that i has j
as its rightson)

AND id = j;

OFUN set_value(t; i; j); $( This must be changed for a data type
other than INTEGER for value. Sets the
value of node i on tree t to j.)
EXCEPTIONS
NOT tree(t); B
node(t, i) = ?;
j < 8 - max_value OR j > max_value;
EFFECTS
'node(t, i).value = j;

VFUN preorder_traversal(t) -> VECTOR_OF INTEGER v;
$( Returns a vector of integers, which represents all
node identifiers for the tree t, in a preorder
traversal.)
EXCEPTIONS
NOT tree(t):;
size_of tree(t) = 0;
DERIVATION
preorder (t, root_id(t));

VFUN inorder_traversal(t) -> VECTOR_OF INTEGER v;
$( Returns a vector of integers, which represents all
node identifiers for the tree t, in an inorder
traversal.)
EXCEPTIONS
NOT tree(t);
size_of_ tree(t) = 0;
DERIVATION
inorder (t, root_id(t));
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VFUN postorder_traversal(t) -> VECTOR OF INTEGER v;
$( Returns a vector of integers, which represents all
node identifiers for the tree t, in a postorder
traversal.)
EXCEPTIONS
NOT tree(t); .
size_of tree(t) = 0;
DERIVATION
postorder (t, root_id(t));

END_MODULE




Appendix V
Character Oriented Editor

A. Key Words: editor, text editor, character editor, file

B. References

This module was modeled after TECO, an editor found on the
DEC-19 as well as other systems. A survey of on-line editors
along with examples can be found in the article On-line Text
Editing: A Survey, by Andries Van Dam and David E. Rice,
Computing Surveys, Vol. 3, No. 3, September, 1971.

C. Hidden Information

The module hides all decisions about how the editor is
implemented. For instance, users of the module cannot assertain
how the edit file is stored. 1Is it in an array, a linked list or
some other data structure?

D. Description (an aid to understanding the definition, though
the definition is the arbitrator of all 1issues or questions
raised) -

This module represents the functional capabilities of an
editor. It is assumed that an intermediary level for processing
a command systax exists between this and the user. The edit file
is made up of a sequence of characters. At no time .can the total
number of characters in the file exceed "max_file_size." A line
is a sequence of characters bracketed by the implementation
parameter "line_end." The first and 1last lines of a file are
bracketed by only one "line_end" and either the beginning or the
end of the file. There are no explicit line numbers. Operations
on the file are relative to a current position.

The file cannot be accessed directly. It is only through
the HIDDEN function "file" that the text may be retrived. This
function is neccessary in order to describe changes which effect
the file. The <current position 1is represented by the HIDDENWN
function "pointer."

At the onset, the file is closed and uninitialized. The
function "open_file" must be called before editing operations may
begin. "Open" is a predicate which returns true when the file
has been initialized. "Close_file™ terminates an editing
session.
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The only function that allows a view of the file outside
of this module 1is "display lines." “Dlsplay lines"” makes 1lines
visible relative to the position that the 901nter references at
the time of the function call. The remaining functions don't
return a value, they only have effects on the pointer and the
contents of the edit file.

The following functions strictly move the pointer. They
are. "move_pointer_i characters" "move_pointer over_i 11nes'
"move to beglnn1ng of file", ™"move to _end of file®™ and "scan."”
"Move 901nter i characters" moves the 901nter “foward or backward
over characters. "Move_pointer_over_i lines" moves the pointer
foward or backward over lines. ~"Move to _beginning_of file"
posxtLOns the pointer to the first character of the file, and
"move to end of file" positions the pointer one past the end of
the file. Lastly, "scan" is used to position the pointer to the
character following a given number of occurrences of a character
string.

The rest of the functions alter the appearance of the file

as well as possibly move the pointer. They are,
"delete_characters”, "delete_lines”, "delete_entire_file",
"insert:characters", and "replace." "Delete characters" and
"delete lines" delete characters and 1lines from the file,
respectively. The entire file can be deleted via

"delete_entire_file." "Insert_characters" is used to add text to
the edit file. Lastly, "replace" substitutes one string of
characters for another.

E. Modifications

One way to make this editor more robust would be to add a
facility for defining editing macros. In this manner, new
editing primitives could be created from existing ones.

F. Alternatives

Rather than having a pointer into the file, lines of text
could have a reference number. Locations for changes to the edit
file could be specified by using this line number as opposed to
positioning the pointer. See the specification of
line_oriented_editor.




MODULE character_oriented_editor

$( It is probably best to study the specification in the following
order: the PARAMETERS line_end and max_file _size; the VFUNs file
and pointer; the DEFINITIONS of file sxze, “number of _lines,

end_of line, start_of line, line, and current line¥; “and the

other FUNCTIONS, reading the remaining DEFINITIONS as they are used
in FUNCTIONS.)

TYPES

one_line: VECTOR_OF CHAR;

DECLARATIONS

INTEGER i;

PARAMETERS

CHAR line_end; $( character in the file indicating the end of a
line)
INTEGER max_file_size; $( maximum number of characters permissible
in a file) ,

DEFINITIONS ]
$( A line is a sequence of characters bracketed by
line_ends; the line_end characters themselves are not
part of the line. The first and last line of a file are
bracketed by only one line_end and either the beginning
or end of the file.)

INTEGER file_size IS LENGTH(file()); $( The total number of
characters in the file,
including line_ends.)

INTEGER number_of_ lines
IS 1 + CARDINALITY({ INTEGER k | file()[k] = line end });
$( The total number of lines in the file is always one
greater than the number of line_ends, since line_ends
act as separators between lines.)

INTEGER end_of_line (i) |
IS IF i = number_of_lines
THEN file_size $( The case of the last line.)
ELSE SOME INTEGER j | file()([j] = line_end
AND CARDINALITY({ INTEGER k |
k < j AND file()[k] = line_ end }) = i - 1;
$( The clause about the CARDINALITY says that there are

exactly i-1 line_ends prior to position j.)
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INTEGER start_of_line(i)
IS IF i = T THEN 1 ELSE 1 + end of line(i ~ 1);
$( Gives the position in the file of the first character

in line 1)

one_line line(i)
IS VECTOR(FOR j FROM start of line(i) TO end of line(i)
: file()[j]); $( The character string forming line i)

INTEGER current_line#
IS 1 + CARDINALITY({ INTEGER j | file()[]j] = line_end
AND j < pointer() });

$( This is the line number of the line into which pointer
is pointing. It is always true that the number of
line_ends intervening between the beginning of the file
and any particular character position is one less than
the line number of the line containing the particular
character position. Note that by this definition, if the
pointer is at a line_end, current_line# is that of the

line terminated by the line_end.)

BOOLEAN enough_characters (i)
IS (i > @ AND i + pointer() <= file_size + 1)
$( The pointer may point one position past the last
character in the file.) .

OR(i < @ AND pointer () + i >= 1)
OR i = 0; $( This is true if there are enough characte;s

relative to the pointer position to do the desired
character operation.)

BOOLEAN enough_lines(i)
IS (i > @ AND current _line$ + i <= number_of_lines + 1)

OR(i < 1 AND current line# + i >= 1)
OR i = @8; $( This is true if there are enough lines r=2lative

to the pointer position to perform the
delete_lines operation.)

VECTOR_OF CHAR character_delete (INTEGER start_position;
INTEGER number to _delete;

VECTOR OF CHAR string)
$( This returns a sequence of characters identical to
string except that a substring has been deleted. The
substring contains number_to_delete characters and
starts with start_position.)
IS VECTOR(FOR i FROM 1 TO LENGTH(string) - number_to_delete
: IF i < start position

THEN string[i)
ELSE string(i + number_to_delete]);
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VECTOR_OF CHAR character_insert (INTEGER insertion_point;
VECTOR_OF CHAR insertion_string;
VECTOR OF CHAR original string)

IS $( This returns a sequence of characters identical to
original_string except that string is added just before
insertion _point.)

VECTOR(FOR i
FROM 1
TO LENGTH(insettion _string) + LENGTH(original_string)
: IF i < insertion point
THEN o:xginalnstrlnq[i]
$( The portion before the added characters.)
ELSE IF i < insertion_point + LENGTH(insertion_string)
THEN insertion strxng[l - insertion point + 1)
$( For i=insecrtion _point, the character
in the resulting string must be
insertion string(i].)
ELSE original_string(i -
LENGTH (insertion_string)])
$( The portion after the added characters.);

INTEGER not_enough_matches IS 0;

INTEGER no_more_matches IS 0; $( Note, it is the same value as
not_enough_matches.)

BOOLEAN at_end (VECTOR_OF CHAR file strlng,
INTEGER starting poxnt:
VECTOR_OF CHAR string)
IS $( True, if there are less than the length of string
characters from the starting_point through to the end of
the file_string. True indicates that there can not be a
match of the contents of string in any substring of
file_string beginning at starting_point.)
LENGTH (string) > LENGTH(file _string) - starting_point + 1
$( The expression LENGTH (file _string) -starting_poxnt+l
is the number of characters from starting_point through
to the end of file_string.);

BOOLEAN at_match (VECTOR_OF CHAR file_string;
INTEGER starting_point;
VECTOR OF CHAR string)
IS $( True, if there is a match of string in file _string
beginning at starting_point.)
NOT at end(file string, starting _point, string)
AND (FORALL INTEGER k |
k>0
AND k <= LENGTH(string):
string(k] = file_string(starting_point + k - 1]);




-94-

i INTEGER next_match (VECTOR_OF CHAR file string;
i INTEGER starting poxnt:
VECTOR_OF CHAR string)
i IS $( The position of the next match of string in file string
c which occurs on or after starting point. If there Is no
match, then not_enough_matches is returned.)
IF at_end(file_string, starting_point, string)
THEN not enough matches
ELSE IF at_match(file_string, starting_point, string)
THEN starting point
ELSE next match(file _String, starting_point + 1, string);

INTEGER position_after_ith_match(VECTOR OF CHAR file strinq;
INTEGER starting poxntz
VECTOR_OF CHAR string to_match;
INTEGER i)
IS §( The position just after the ith match of string_to _match
in file_string. The i matches must all stact on or after
starting_point.)
IFi=2¢0
THEN starting_point
ELSE IF next match(file _string, starting_point, string_to_match)
= not_enough_| matches
THEN not enough matches
ELSE position_after_ith_match(file_string,
next match(tile _string,
starting _point,
string_ to _match)
+ LENGTH (string_ to match)
$( The position Following
the next occurrence of a
match of string which
is on or after
starting_point),
string_to _match, i - 1);

VECTOR_OF CHAR result_of_substitutions (VECTOR_OF CHAR original;
VECTOR OF CHAR o014d;
VECTOR_ “OF CHAR new;
INTEGER starting _point)
$( A new string of characters where each occurrence of
the contents of old in original is replaced by the
contents of new. Starting_point references the next
character in original where a match may begin.)
IF at_end(original, starting_point, old)
THEN original
ELSE IF at_match(original, starting_point, old)
THEN LET VECTOR OF CHAR updated original = 3
character insett(starting poTnt, new,
character _delete(starting_point,
LENGTH (014d) ,
original))
$( The result of one substitution can be viewed as
inserting the new after deleting the old.)
IN result_of_substitutions(updated_original, old, new,
starting _point + LENGTH (new)
$( The position after the newly inserted string.))
ELSE result_of substitutions(original, old, new,
starting_point + 1);

A —————
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INTEGER position_after substitutions (VECTOR OF CHAR original;

: VECTOR OF CHAR o01d;

] VECTOR OF CHAR new;
INTEGER stacrting point;
INTEGER number of matches)

18 $( If all occurrences of old in original sStarting on or
after starting point were replaced by new, the position
following the Tast substitution would equal the value
returned by this definition. Number of matches is used
to keep track of the number of matches found.)

IF next match(original, starting_point, old) = no_more matches
: THEN stacting point
+ number of matches * (LENGTH (new) - LENGTH(old))
$( Stacrting point has either its original value when the
definition was first used or points to the position after the
1 last occurrence of a match of old that is on or after the
[ original starting_point. To find the location of the
position after the last substitution of new for old,
this value must be shifted. The shift is the number
of characters added or deleted from the file as the
result of a substitution times the number of
substitutions. LENGTH (0ld) - LENGTH (new) reflects
the number of characters added or deleted from
the file as a result of a substitution.)
ELSE IF at _match(original, starting point, old)
THEN position after_ substitutions(original, old, new,
starting point
+ LENGTH (01d)
$( Position where
another match
may start.),
number of matches + 1)
BLSE position_after substitutions(original, o01ld7 new,
starting point + 1,
number of matches);

FUNCTIONS

VFUN file() -> VECTOR_OF CHAR vc; §$( Represents text to be edited.)
HIDDEN;
INITIALLY
ve = 23

. VFUN open() =-> BOOLEAN b; §( Predicate, which returns true if file
is open and therefore ready for
editing.)

HIDDEN;
INITIALLY
FALSE;

VFUN pointer() => INTEGER p; §$( Pointer into file giving the
current position, from which most
editing operations are defined.)

HIDDEN;
INITIALLY

P 1
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OFUN open_file(); $( Defines the form of the input file, upon .
which all editing operations are performed.) |
EXCEPTIONS ‘
open();
EFFECTS
'open() = TRUE;
'‘file()
= VECTOR(FOR j
FROM 1
TO SOME INTEGER k | k >= 0 AND k <= max file size
: SOME CHAR ¢ | TRUE); v %

T

OFUN close file();
$( Terminates an editing session. If further editing is
: to be done, an open_file must be performed. In
integrating this module into a complete file package,
the definitions of open_file and close file must be
modified to reflect (a) that close file writes the
modified file to disk and (b) the definition, pecrhaps
via operating system commands, of which file is opened
and of exceptions corresponding to not finding a file by
that name.)
EXCEPTIONS
NOT open();
EFFECTS
‘open() = FALSE;

VFUN display_lines(i) =-> VECTOR_OF CHAR vc;
$( This 'prints' lines or makes them visible relative to
the curcrent position. If i>@, then the curcrent line
starting at the current position will be displayed, as
well as i-1 lines following the current one. If i<=0,
then the cutrent line up to the position before current
position is displayed as well as the absolute value of i
lines preceding the current line. Notice that the value
teturned by display_lines is just the sequence of
characters including line ends as they appear in the
file; if the lines are to be truly printed, the line _end
characters must be used to generate the appropriate
control characters for the particular output device
involved.)
EXCEPTIONS
NOT open();
NOT enough_lines(i);
DERIVATION
IFi>0
THEN VECTOR(FOR j 4
FROM pointer () 5
TO end_of line(current_line% + i - 1)
: file()T31Y
ELSE VECTOR(FOR j
FROM start_of line(current_line# + i)
TO pointer{) = 1
: file() (3))
$( For some applications, it may be preferable to have
display_lines return a sequence of lines rather than a
string of characters with the line boundaries as
characters. To do this, the value returned should be
VECTOR OF one line; the vector is easily defined using
the definitions of line (i) and current_line#.);

5y o 4o
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OFUN move pointer_ i_characters(i);
T$( If i>0, then advance the pointer i characters forward.
If i<8, then move the pointer back over the absolute
value of i characters. If i=0, then no change occurs. In
moving the pointer foward, one is allowed to move it one
position after the last character of the file.)
EXCEPTIONS
NOT open():
NOT enough_ characters(i)x
EFFECTS
'pointer () = pointer() + i;

| OFUN move pointer over_ i _lines(i):

' “$( This positions the pointer to the beginning of a line
i lines from the current pointer. That is, if i=0, the
pointer is moved to the beginning of the current line.

_ If i>0, the pointer is moved to the beginning of the ith

F line after the current one. If i<@, the pointer is moved

to the beginning of the absolute value of i lines before
the current line.) 1
EXCEPTIONS ’
NOT open():;
NOT enough_lines(i):
EFFECTS
'pointer () = start_of line(current_line# + i);

OFUN move_to_beginning_of_ file(); $( Moves pointer to the first
character of the file.)
i EXCEPTIONS
NOT open{(); -
EFFECTS s
'pointer () = 1;

OFUN move_to_end_of_file(); $( Set the pointer to the position
after the last character in the file.)
EXCEPTIONS
NOT open():
EFFECTS
‘pointer () = file_size + 1;

OFUN delete_characters(i): |
$( If i>0, then the character indicated by pointer and |
the i-1 characters following it are deleted;
. additionally, pointer points to the next remaining
character. If i<0, then the absolute value of i
characters preceding the pointer are deleted and the
pointer points to the same character as before. If i=0,
this has no effect.)
EXCEPTIONS
NOT open(); :
NOT enough_characters(i);
EFFECTS
IF 1 >= 0
THEN 'file() = character_delete(pointer(), i, file())
ELSE 'file()
= character delete(pointec() + i, 0 - i, file())
AND ‘pointer() = pointer() + i;
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OFUN delete_lines(i);
$( If i>0, then all characters on the current line at or
after pointer are deleted; additionally, the next i-1
lines are deleted, and the pointer points to the first
character after the deleted ones. If i<=0, then all
characters of the current line preceding the pointer are
deleted; additionally, the absolute value of i lines
preceding current line are also deleted. In the case of
i<=@, the pointer will continue to point to the same
character as before the delete.)
EXCEPTIONS
NOT open();
NOT enough_lines(i);
EFFECTS
IFi>0
THEN ‘'file()
= character_delete(pointer (),
end_of lxne( current_line# + i - 1)
-"pointer() + 1
$ (The number of characters to
be deleted), file())
$( The value of pointer need not be changed. The pointer
afterwards either is just past the end of the file if
all lines to the end of the file were deleted, or is at
the first character of the next non_deleted line.;
ELSE 'file()
= character_delete(start_of_line(current_line# + i),
pointer ()
- start_of_line(current_line# + i)
$( The number of characters to be
deleted.), 5
file()) -
AND 'pointer () = star®._of line(current_line# + i);

OFUN delete_entire_file(); $( This deletes the edited copy of the
file.)
EXCEPTIONS
NOT open();
EFFECTS
'file() = VECTOR();
‘pointer () = 1;

OFUN insert_characters (VECTOR_OF CHAR strxng);
$( This operation adds the string just before the
pointer. However, the pointer continues to point to the
same character. String may in fact include line_ends;
therefore adding several lines to a file. If one wants
to add new lines to the end of the file, one should move
the pointer to the position after the last character in
the file; in this case, string should begin with a
line_end if the last character in the file is not a
line_end.)
EXCEPTIONS
NOT open():
file_size + LENGTH(string) > max_file_size;
EFFECTS
‘file() = character_insert(pointer(), string, file());
'‘pointer () = pointer () + LENGTH(string):




OFUN scan(VECTOR_OF CHAR string; INTEGER 1i);
$( This operation moves the pointer to just after the ith
occurrence of string occurring at or after the pointer
' in the file.)
4 EXCEPTIONS
NOT open();
} v LENGTH (string) = 0;
i <= 0;
position_after_ith_match(file(), pointer(), string, i)
= not_enough_matches;
EFFECTS
'pointer ()
= position_after_ith_match(file(), pointer(), string, i);

OFUN replace (VECTOR_OF CHAR old; VECTOR_OF CHAR new):;
$( This substitutes the new string for the old string
whenever old occurs starting at or after the pointer.
Additionally, the pointer is positioned to the character
following the last substitution.)
EXCEPTIONS

NOT open{();

LENGTH (0o1d) = 0;

max_file_size

< LENGTH(result_of substitutions(file(), old, new, pointer())):

EFFECTS
'file()
= result_of substitutions(file(), old, new, pointer()):;
) ‘pointer ()
' = position_after_substitutions(file(), old, new, pointer(),
0); -
END_MODULE




